11866–11872.
https://doi.org/10.1016/j.eswa.2011.02.185
Huang, C.-H., Wang, W.-J., & Chiu, C.-H. (2011). Design
and Implementation of Fuzzy Control on a Two-Wheel
Inverted Pendulum. IEEE Transactions on Industrial
Electronics, 58(7), 2988–3001.
https://doi.org/10.1109/TIE.2010.2069076
Kecskés, I., & Odry, P. (2014). Optimization of PI and
Fuzzy-PI Controllers on Simulation Model of
Szabad(ka)-II Walking Robot. International Journal of
Advanced Robotic Systems, 11(11), 186.
https://doi.org/10.5772/59102
Mai, TA, Dang, TS, Anisimov, DN, & Fedorova, E. (2019).
Fuzzy-PID Controller for Two Wheels Balancing
Robot Based on STM32 Microcontroller. 2019
International Conference on Engineering Technologies
and Computer Science (EnT), 20–24.
https://doi.org/10.1109/EnT.2019.00009
Matsui, N., & Shigyo, M. (1992). Brushless DC motor
control without position and speed sensors. IEEE
Transactions on Industry Applications, 28(1), 120–127.
https://doi.org/10.1109/28.120220
Medynskaya, MK (2015). Fuzzy set theory. The concept of
fuzzy sets. 2015 XVIII International Conference on
Soft Computing and Measurements (SCM), 30–31.
https://doi.org/10.1109/SCM.2015.7190402
Noga, S. (2006). Kinematics and dynamics of some
selected two-wheeled mobile robots. Archives of Civil
and Mechanical Engineering, 6(3), 55–70.
https://doi.org/10.1016/S1644-9665(12)60241-6
Odry, A., & Fuller, R. (2018). Comparison of Optimized
PID and Fuzzy Control Strategies on a Mobile
Pendulum Robot. 2018 IEEE 12th International
Symposium on Applied Computational Intelligence and
Informatics (SACI), 000207–000212.
https://doi.org/10.1109/SACI.2018.8440947
Pan, T., & Zhu, Y. (2018). Using Sensors with the Arduino.
In T. Pan & Y. Zhu, Designing Embedded Systems with
Arduino (pp. 45–100). Springer Singapore.
https://doi.org/10.1007/978-981-10-4418-2_3
Perdukova, D., Fedor, P., & Fedak, V. (2019). A Fuzzy
Approach to Optimal DC Motor Controller Design.
2019 International Conference on Electrical Drives &
Power Electronics (EDPE), 48–53.
https://doi.org/10.1109/EDPE.2019.8883896
Sadegh-Zadeh, K. (1999). Advances in fuzzy theory.
Artificial Intelligence in Medicine, 15(3), 309–323.
https://doi.org/10.1016/S0933-3657(98)00060-8
Santoso, S., & Mursyid, S. (2017). PROPORTIONAL
INTEGRAL (PI) CONTROL ON LINE FOLLOWER
ROBOT. Journal of Science and Informatics, 1(1), 10–
10.
Tugaev, VD, & Kulibaba, V. Ya. (1986). Introduction of an
industrial robot in a machine shop. Metallurgist, 30(10),
380–381. https://doi.org/10.1007/BF00741414
Weik, MH (2000). Manipulating industrial robots. In MH
Weik, Computer Science and Communications
Dictionary (pp. 972–972). Springer US.
https://doi.org/10.1007/1-4020-0613-6_11017
Xin, Y., Xu, B., Xin, H., Xu, J., & Hu, L. (2011). The
Computer Simulation and Real-Time Control for the
Inverted Pendulum System Based on PID. In M. Ma
(Ed.), Communication Systems and Information
Technology (Vol. 100, pp. 729–736). Springer Berlin
Heidelberg. https://doi.org/10.1007/978-3-642-21762-
3_95
Yıldırım, Ş., & Arslan, E. (2018). ODE (Open Dynamics
Engine) based stability control algorithm for six legged
robots. Measurements, 124, 367–377.
https://doi.org/10.1016/j.measurement.2018.03.057
Yu, G.-R., Leu, Y.-K., & Huang, H.-T. (2017). PSO-based
fuzzy control of a self-balancing two-wheeled robot.
2017 Joint 17th World Congress of International Fuzzy
Systems Association and 9th International Conference
on Soft Computing and Intelligent Systems (IFSA-
SCIS), 1–5. https://doi.org/10.1109/IFSA-
SCIS.2017.8023296
Yun, H., Bang, J., Kim, J., & Lee, J. (2019). High speed
segway control with series elastic actuator for driving
stability improvement. Journal of Mechanical Science
and Technology, 33(11), 5449–5459.
https://doi.org/10.1007/s12206-019-1039-x
Zadeh, LA (2009). Toward extended fuzzy logic—A first
step. Fuzzy Sets and Systems, 160(21), 3175–3181.
https://doi.org/10.1016/j.fss.2009.04.009
Zadeh, LA (2015). Fuzzy logic—A personal perspective.
Fuzzy Sets and Systems, 281, 4–20.
https://doi.org/10.1016/j.fss.2015.05.009