El-Khatib, S., Rodzin, S. & Skobtsov, Y. (2016).
Investigation of Optimal Heuristical Parameters for
Mixed ACO-k-means Segmentation Algorithm for
MRI Images BT - Information Technologies in
Science, Management, Social Sphere and Medicine.
355–360.
https://doi.org/https://doi.org/10.2991/itsmssm-
16.2016.72
Fränti, P. & Sieranoja, S. (2019). How much can k-means
be improved by using better initialization and repeats?
Pattern Recognition, 93, 95–112.
https://doi.org/10.1016/j.patcog.2019.04.014
Gao, H., Li, Y., Kabalyants, P., Xu, H. & Martinez-Bejar,
R. (2020). A Novel Hybrid PSO-K-Means Clustering
Algorithm Using Gaussian Estimation of Distribution
Method and Lévy Flight. IEEE Access, 8, 122848–
122863.
https://doi.org/10.1109/ACCESS.2020.3007498
G.G, G. & K, S. (2017). Improved Optimization centroid in
modified Kmeans cluster. International Journal of
Engineering and Technology, 9(2), 1511–1517.
https://doi.org/10.21817/ijet/2017/v9i2/170902224
Gupta, M. K. & Chandra, P. (2019a). MP-K-Means:
Modified Partition Based Cluster Initialization Method
for K-Means Algorithm. International Journal of
Recent Technology and Engineering, 8(4), 1140–1148.
https://doi.org/10.35940/ijrte.d6837.118419
Gupta, M. K. & Chandra, P. (2019b). P-k-means: k-means
Using Partition Based Cluster Initialization Method.
SSRN Electronic Journal, 567–573.
https://doi.org/10.2139/ssrn.3462549
Irani, J., Pise, N. & Phatak, M. (2016). Clustering
Techniques and the Similarity Measures used in
Clustering: A Survey. International Journal of
Computer Applications (0975, 134, 0975 – 8887.
https://doi.org/10.1080/00268948108072666
Janani, R. & Vijayarani, S. (2019). Text document
clustering using Spectral Clustering algorithm with
Particle Swarm Optimization. Expert Systems with
Applications, 134, 192–200.
https://doi.org/10.1016/j.eswa.2019.05.030
Kapil, S., Chawla, M. & Ansari, M. D. (2016). On K-means
data clustering algorithm with genetic algorithm. 2016
Fourth International Conference on Parallel,
Distributed and Grid Computing (PDGC), 202–206.
https://doi.org/10.1109/PDGC.2016.7913145
Kim, H., Kim, H. K. & Cho, S. (2020). Improving spherical
k-means for document clustering: Fast initialization,
sparse centroid projection, and efficient cluster
labeling. Expert Systems with Applications, 150,
113288.
https://doi.org/https://doi.org/10.1016/j.eswa.2020.113
288
Kumar, S., Kumar-Solanki, V., Choudhary, S. K., Selamat,
A. & Gonzalez-Crespo, R. (2020). Comparative Study
on Ant Colony Optimization (ACO) and K-Means
Clustering Approaches for Jobs Scheduling and Energy
Optimization Model in Internet of Things (IoT).
International Journal of Interactive Multimedia and
Artificial Intelligence, 6(1), 107.
https://doi.org/10.9781/ijimai.2020.01.003
Kurniawan, M., Muhima, R. R. & Agustini, S. (2020).
Comparison of Clustering K-Means, Fuzzy C-Means,
and Linkage for Nasa Active Fire Dataset. International
Journal of Artificial Intelligence & Robotics (IJAIR),
2(2), 34. https://doi.org/10.25139/ijair.v2i2.3030
Lakshmi, M. A., Daniel, G. V. & Contents, D. S. R. (2019).
Initial Centroids for K-Means Using Nearest Neighbors
and Feature Means. Springer, 900(February), 291–298.
https://doi.org/10.1007/978-981-13-3600-3
Lakshmi Patibandla, R. S. M., Tarakeswara Rao, B.,
Sandhya Krishna, P. & Maddumala, V. R. (2020).
Medical data clustering using particle swarm
optimization method. Journal of Critical Reviews, 7(6),
363–367. https://doi.org/10.31838/jcr.07.06.64
Madhukar, M. & Verma, S. (2019). Hybrid Kmeans with
Improved Bagging for Semantic Analysis of Tweets on
Social Causes. Proceedings of ICDMAI, 808, 283–295.
https://doi.org/10.1007/978-981-13-1402-5
Marom, Y. & Feldman, D. (2019). k-Means Clustering of
Lines for Big Data. In H. Wallach, H. Larochelle, A.
Beygelzimer, F. d\textquotesingle Alché-Buc, E. Fox &
R. Garnett (Eds.), Advances in Neural Information
Processing Systems 32 (pp. 12817–12826). Curran
Associates, Inc. http://papers.nips.cc/paper/9442-k-
means-clustering-of-lines-for-big-data.pdf
Muhima, R. R., Kurniawan, M., Wardhana, S. R., Yudhana,
A. & Sunardi. (2022). n-Mating Effect on Genetic
Algorithm-Based Clustering Performance for Hotspots
Data. 2022 IEEE International Conference on
Communication, Networks and Satellite
(COMNETSAT), 212–215.
https://doi.org/10.1109/COMNETSAT56033.2022.99
94400
Nerurkar, P., Shirke, A., Chandane, M. & Bhirud, S. (2018).
A Novel Heuristic for Evolutionary Clustering.
Procedia Computer Science, 125, 780–789.
https://doi.org/10.1016/j.procs.2017.12.100
Pacifico, L. D. S. & Ludermir, T. B. (2019). Hybrid K-
Means and Improved Self-Adaptive Particle Swarm
Optimization for Data Clustering. 2019 International
Joint Conference on Neural Networks (IJCNN), 1–7.
https://doi.org/10.1109/IJCNN.2019.8851806
Paul, S., De, S. & Dey, S. (2020). A Novel Approach of
Data Clustering Using An Improved Particle Swarm
Optimization Based K–Means Clustering Algorithm.
2020 IEEE International Conference on Electronics,
Computing and Communication Technologies
(CONECCT), 1–6.
https://doi.org/10.1109/CONECCT50063.2020.91986
85
Sajana, T., Sheela Rani, C. M. & Narayana, K. V. (2016).
A survey on clustering techniques for big data mining.
Indian Journal of Science and Technology, 9(3), 1–12.
https://doi.org/10.17485/ijst/2016/v9i3/75971
Shukla, S. & S, N. (2014). A Review on K-means Data
Clustering Approach. International Journal of
Information & Computation Technology, 4(17), 1847–
1860.