REFERENCES
Benhamouda, F., Krenn, S., Lyubashevsky, V., and Pietrzak,
K. (2016). Efficient zero-knowledge proofs for com-
mitments from learning with errors over rings. In
Computer Security–ESORICS 2015: 20th European
Symposium on Research in Computer Security, Vi-
enna, Austria, September 21-25, 2015, Proceedings,
Part I, pages 305–325. Springer.
Bernstein, D. J. (2009). Introduction to post-quantum cryp-
tography. In Post-quantum cryptography, pages 1–14.
Springer.
Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S.,
Rasmussen, P. M., and Sahai, A. (2018). Thresh-
old cryptosystems from threshold fully homomorphic
encryption. In Advances in Cryptology–CRYPTO
2018: 38th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 19–23, 2018,
Proceedings, Part I 38, pages 565–596. Springer.
Boschini, C., Takahashi, A., and Tibouchi, M. (2022).
Musig-l: Lattice-based multi-signature with single-
round online phase. In Advances in Cryptology–
CRYPTO 2022: 42nd Annual International Cryptol-
ogy Conference, CRYPTO 2022, Santa Barbara, CA,
USA, August 15–18, 2022, Proceedings, Part II, pages
276–305. Springer.
Brandao, L. and Peralta, R. (2023). Nist first call for multi-
party threshold schemes.
Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F.,
and Tucker, I. (2020). Bandwidth-efficient threshold
ec-dsa. In IACR International Conference on Public-
Key Cryptography, pages 266–296. Springer.
Chen, Y. (2023). Dualms: Efficient lattice-based two-round
multi-signature with trapdoor-free simulation. Cryp-
tology ePrint Archive.
Cogliati, B., Dodis, Y., Katz, J., Lee, J., Steinberger, J.,
Thiruvengadam, A., and Zhang, Z. (2018). Prov-
able security of (tweakable) block ciphers based on
substitution-permutation networks. In Annual In-
ternational Cryptology Conference, pages 722–753.
Springer.
Damg
˚
ard, I., Jakobsen, T. P., Nielsen, J. B., Pagter, J. I., and
Østerg
˚
ard, M. B. (2020). Fast threshold ecdsa with
honest majority. In International Conference on Secu-
rity and Cryptography for Networks, pages 382–400.
Springer.
Damg
˚
ard, I. and Koprowski, M. (2001). Practical thresh-
old rsa signatures without a trusted dealer. In Interna-
tional Conference on the Theory and Applications of
Cryptographic Techniques, pages 152–165. Springer.
Damg
˚
ard, I., Orlandi, C., Takahashi, A., and Tibouchi, M.
(2022). Two-round n-out-of-n and multi-signatures
and trapdoor commitment from lattices. Journal of
Crypatology, 35(2):1–56.
Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P.,
Seiler, G., and Stehl
´
e, D. (2018). Crystals–dilithium:
Digital signatures from module lattices.
Freemanlaw (2022). Cryptocurrency transactions: Multi-
signature arrangements explained.
Fukumitsu, M. and Hasegawa, S. (2020). A lattice-based
provably secure multisignature scheme in quantum
random oracle model. In Provable and Practical Se-
curity: 14th International Conference, ProvSec 2020,
Singapore, November 29–December 1, 2020, Pro-
ceedings 14, pages 45–64. Springer.
Gennaro, R. and Goldfeder, S. (2018). Fast multiparty
threshold ecdsa with fast trustless setup. In Proceed-
ings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1179–
1194.
Kiltz, E., Lyubashevsky, V., and Schaffner, C. (2018).
A concrete treatment of fiat-shamir signatures in
the quantum random-oracle model. In Advances in
Cryptology–EUROCRYPT 2018: 37th Annual Inter-
national Conference on the Theory and Applications
of Cryptographic Techniques, Tel Aviv, Israel, April
29-May 3, 2018 Proceedings, Part III 37, pages 552–
586. Springer.
Komlo, C. and Goldberg, I. (2020). Frost: flexible round-
optimized schnorr threshold signatures. In Interna-
tional Conference on Selected Areas in Cryptography,
pages 34–65. Springer.
Laud, P., Snetkov, N., and Vakarjuk, J. (2022). Dilizium
2.0: Revisiting two-party crystals-dilithium. Cryptol-
ogy ePrint Archive.
Lindell, Y. and Nof, A. (2018). Fast secure multiparty ecdsa
with practical distributed key generation and applica-
tions to cryptocurrency custody. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 1837–1854.
Liu, J., Wen, J., Zhang, B., Dong, S., Tang, B., and Yu, Y.
(2022). A post quantum secure multi-party collabora-
tive signature with deterability in the industrial inter-
net of things. Future Generation Computer Systems.
Ricci, S., Dzurenda, P., Casanova-Marqu
´
es, R., and
Cika, P. (2022). Threshold signature for privacy-
preserving blockchain. In Business Process Man-
agement: Blockchain, Robotic Process Automation,
and Central and Eastern Europe Forum: BPM 2022
Blockchain, Germany, September 11–16, 2022, Pro-
ceedings, pages 100–115. Springer.
Shoup, V. (2000). Practical threshold signatures. In Interna-
tional Conference on the Theory and Applications of
Cryptographic Techniques, pages 207–220. Springer.
Vakarjuk, J., Snetkov, N., and Willemson, J. (2021). Diliz-
ium: A two-party lattice-based signature scheme. En-
tropy, 23(8):989.
SECRYPT 2023 - 20th International Conference on Security and Cryptography
730