REFERENCES
Aissaoui, N., Kaibou, R., and Azzaz, M. S. (2022). Real-
time fpga implementation of digital video watermark-
ing techniques using co-design approach: Compara-
tive study. In 7th Int. Conf. on Image and Sig.Proc.
and their App., pages 1–6. IEEE.
Alawida, M., Teh, J. S., et al. (2019). An image encryption
scheme based on hybridizing digital chaos and finite
state machine. Sig. Proc., 164:249–266.
Alvarez, G. and Li, S. (2006). Some basic cryptographic
requirements for chaos-based cryptosystems. Int. j. of
bifu. and chaos, 16(08):2129–2151.
Azzaz, M. S., Maali, A., Kaibou, R., Kakouche, I., Mo-
hamed, S., and Hamil, H. (2020a). Fpga hw/sw code-
sign approach for real-time image proc. using hls. In
1st Int. Conf. on Comm., Control Sys. and Sig. Proc.,
pages 169–174. IEEE.
Azzaz, M. S., Tanougast, C., Maali, A., and Benssalah,
M. (2020b). An efficient and lightweight multi-scroll
chaos-based hardware solution for protecting finger-
print biometric templates. Int. J. of Comm. Sys.,
33(10):e4211.
Azzaz, M. S., Tanougast, C., Sadoudi, S., and Bouridane,
A. (2013a). Synchronized hybrid chaotic generators:
Application to real-time wireless speech encryption.
Comm. Nonl. Sci. and Num. Simu., 18(8):2035–2047.
Azzaz, M. S., Tanougast, C., Sadoudi, S., and Dandache,
A. (2013b). Robust chaotic key stream generator for
real-time images encryption. J. of RT Image Proc.,
8(3):297–306.
Azzaz, M. S., Tanougast, C., Sadoudi, S., Fellah, R., and
Dandache, A. (2013c). A new auto-switched chaotic
system and its fpga implementation. Comm. in Non-
linear Sci. and Num. Simu., 18(7):1792–1804.
Bouteghrine, B., Tanougast, C., and Sadoudi, S. (2021).
Novel image encryption algorithm based on new 3-d
chaos map. Mult. Tools and App., 80:25583–25605.
CAESAR project (2019). CAESAR: Competition for Au-
thenticated Encryption: Security, Applicability, and
Robustness. https://competitions.cr.yp.to/caesar.html.
Online; accessed 2023.
Cai, H., Sun, J.-y., Gao, Z.-b., and Zhang, H. (2022). A
novel multi-wing chaotic system with fpga implemen-
tation and application in image encryption. J. of RT
Image Proc., 19(4):775–790.
eSTREAM (2014). eSTREAM: the ECRYPT Stream Ci-
pher Project. https://www.ecrypt.eu.org/stream/. On-
line; accessed 2023.
Fellah, R., Azzaz, M. S., Tanougast, C., and Kaibou, R.
(2021). Design of a simple and low cost chaotic signal
generation circuit for uwb applications. The Europ.
Phys. Journal Spec. Topics, 230(18-20):3439–3447.
Gafsi, M., Amdouni, R., et al. (2023). Hardware imple-
mentation of a strong pseudorandom number genera-
tor based block-cipher system for color image encryp-
tion and decryption. Int. J. of Circuits. Theory and
App., 51(1):410–436.
Gafsi, M., Hajjaji, M. A., Malek, J., and Mtibaa, A. (2021).
Fpga hw acceleration of an improved chaos-based
cryptosystem for rt image encryption and decryption.
J. of Amb. Intell. and Human. Comput., pages 1–22.
Hagras, E. A. A. and Saber, M. (2020). Low power
and high-speed fpga implementation for 4d memris-
tor chaotic system for image encryption. Mult. Tools
and App., 79:23203 – 23222.
Hasan, F. S. and Saffo, M. A. (2020). Fpga hw co-
simulation of image encryption using stream cipher
based on chaotic maps. Sens. and Imag., 21(1):35.
Kaibou, R., Azzaz, M. S., Benssalah, M., Teguig, D.,
Hamil, H., Merah, A., and Akrour, M. T. (2021). Real-
time fpga implementation of a secure chaos-based dig-
ital crypto-watermarking system in the dwt domain
using co-design approach. J. of RT Image Proc.,
18(6):2009–2025.
Kerckhoffs, A. (1883). La cryptographie militaire, ou, Des
chiffres usit
´
es en temps de guerre: avec un nouveau
proc
´
ed
´
e de d
´
echiffrement applicable aux syst
`
emes
`
a
double clef. Librairie militaire de L. Baudoin.
Kifouche, A., Azzaz, M. S., et al. (2022). Design and im-
plementation of a new lightweight chaos-based cryp-
tosystem to secure iot communications. Int. J.of Info.
Sec., 21(6):1247–1262.
Kocarev, L. and Parlitz, U. (1995). General approach for
chaotic synchronization with applications to commu-
nication. Phy. review letters, 74(25):5028.
Liu, S., Lau, F. C., and Schafer, B. C. (2019). Accelerating
fpga prototyping through predictive model-based hls
design space exploration. In Proc. of the 56th Annual
Design Automation Conf., pages 1–6.
Maazouz, M., Toubal, A., Bengherbia, B., Houhou, O., and
Batel, N. (2022). Fpga implementation of a chaos-
based image encryption algorithm. J. of King Saud
Univ.-Comp. and Info. Sciences, 34(10):9926–9941.
Mohanta, B. K., Jena, D., Satapathy, U., and Patnaik, S.
(2020). Survey on iot security: Challenges and solu-
tion using machine learning, artificial intelligence and
blockchain technology. IoT, 11:100227.
NIST Lightweight Crypto (2017). Lightweight
Cryptography. https://csrc.nist.gov/projects/
lightweight-cryptography/round-1-candidates.
Online; accessed 2023.
Rawat, A., Sehgal, K., Tiwari, A., Sharma, A., and Joshi,
A. (2019). A novel accelerated implementation of rsa
using parallel processing. J. of Discrete Math. Sci. and
Crypto., 22(2):309–322.
Sun, J., Zang, M., Liu, P., and Wang, Y. (2022). A secure
communication scheme of three-variable chaotic cou-
pling synchronization based on dna chemical reaction
networks. IEEE Trans. on Sig. Proc., 70:2362–2373.
Tanougast, C., Bouteghrine, B., Sadoudi, S., and
Chen, H. (2023). Image encryption using a
chaotic/hyperchaotic multidimensional discrete sys-
tem. In Recent Adv.in Im. Sec. Tech.: Intelligent Im-
age, Sig., and Video Proc., pages 105–125. Springer.
Touqeer, H., Zaman, S., Amin, R., Hussain, M., Al-
Turjman, F., and Bilal, M. (2021). Smart home se-
curity: challenges, issues and solutions at different iot
layers. The J. of Sup.comp, 77(12):14053–14089.
Design of a New Hardware IP-HLS for Real-Time Image Chaos-Based Encryption
485