2179-2198. IWA PUBLISHING. https://doi.org/10.
2166/ws.2019.122
Ebrahim Banihabib, M., Mousavi-Mirkalaei, P. (2019).
Extended linear and non-linear auto-regressive models
for forecasting the urban water consumption of a fast-
growing city in an arid region. Sustainable Cities and
Society, 48, 101585. ELSEVIER. https://doi.org/10.
1016/j.scs.2019.101585
Esen, Ö., Yıldırım, D. Ç., Yıldırım, S. (2020). Threshold
effects of economic growth on water stress in the
Eurozone. Environmental Science and Pollution
Research, 27, 31427–31438. Springer. https://doi.org
/10.1007/s11356-020-09383-y
Gan, X., Pei, J., Pavesi, G., Yuan, S., Wang, W. (2022).
Application of intelligent methods in energy efficiency
enhancement of pump system: A review. Energy
Reports, 8, 11592–11606. ELSEVIER. https://doi.org/
10.1016/j.egyr.2022.09.016
Hans, A., Bharat, D. A. (2014). Water as a Resource:
Different Perspectives in Literature. International
Journal of Engineering Research, 3(10). IJERT. DOI:
10.17577/IJERTV3IS100054.
Herzen, J., Lässig, F., Piazzetta, S. G., Neuer, T., Tafti, L.,
Raille, G., Van Pottelbergh, T., Pasieka, M., Skrodzki,
A., Huguenin, N., Dumonal, M., Kościsz, J., Bader, D.,
Gusset, F., Benheddi, M., Williamson, C., Kosinski,
M., Petrik, M., Grosch, G. (2023). Darts: User-friendly
modern machine learning for time series. The Journal
of Machine Learning Research, 23, 1-6. arXiv.
https://doi.org/10.48550/arXiv.2110.03224
Hewamalage, H., Bergmeir, C., Bandara, K. (2022). Global
models for time series forecasting: A Simulation study.
Pattern Recognition, 124, 108441. ELSEVIER.
https://doi.org/10.1016/j.patcog.2021.108441
Hu, S., Gao, J., Zhong, D., Deng, L., Ou, C., Xin, P. (2021).
An Innovative Hourly Water Demand Forecasting
Preprocessing Framework with Local Outlier
Correction and Adaptive Decomposition Techniques.
Water, 13(5), 582. MDPI. https://doi.org/
10.3390/w13050582
Hussain, Z., Wang, Z., Wang, J., Yang, H., Arfan, M.,
Hassan, D., Wang, W., Azam, M. I., Faisal, M. (2022).
A comparative Appraisal of Classical and Holistic
Water Scarcity Indicators. Water Resources
Management, 36, 931-950. Springer. https://doi.org/
10.1007/s11269-022-03061-z
Hyndman, R. J., Koehler, A. B. (2006). Another look at
measures of forecast accuracy. International Journal of
Forecasting, 22(4), 679-688. ELSEVIER. https://doi.
org/10.1016/j.ijforecast.2006.03.001
Karamaziotis, P. I., Raptis, A., Nikolopoulos, K., Litsiou,
K., Assimakopoulos, V. (2020). An empirical
investigation of water consumption forecasting
methods. International Journal of Forecasting, 36(2),
588-606. ELSEVIER. https://doi.org/10.1016/j.
ijforecast.2019.07.009
Klise, K., Hart, D., Bynum, M., Hogge, J., Haxton, T.,
Murray, R., Burkhardt, J. (2020). Water Network Tool
for Resilience (WNTR). User Manual, Version 0.2.3.
EPA. https://doi.org/10.2172/1660790
Kofinas, D., Papageorgiou, E., Laspidou, C., Mellios, N.,
Kokkinos, K. (2016). Daily Multivariate Forecasting of
Water Demand in a Touristic Island with the Use of
Artificial Neural Network and Adaptive Neuro-Fuzzy
Inference System. 2016 International Workshop on
Cyber-Physical Systems for Smart Water Networks
(CySWater), Vienna, Austria. IEEE. https://doi.org/
10.1109/CySWater.2016.7469061
Leitão, J., Simões, N., Sá Marques, J. A., Gil, P., Ribeiro,
B., Cardoso, A. (2019). Detecting urban water
consumption patterns: a time-series clustering
approach. Water Supply, 19(8), 2323-2329. IWA
PUBLISHING. https://doi.org/10.2166/ws.2019.113
Maira, M., Raucha, W., Sitzenfreia, R. (2014). Improving
incomplete water distribution system data. 12th
International Conference on Computing and Control
for the Water Industry (CCWI2013), Procedia
Engineering 70 (2014) 1055 – 1062.
Mesalie, R. A., Aklog, D., Kifelew, M. S. (2021). Failure
assessment for drinking water distribution system in the
case of Bahir Dar institute of technology, Ethiopia.
Applied Water Science, 11, 138. Springer.
https://doi.org/10.1007/s13201-021-01465-7
Montero-Manso, P., Hyndman, R. J. (2021). Principles and
Algorithms for Forecasting Groups of Time Series:
Locality and Globality. International Journal of
Forecasting, 37, 1632-1653. arXiv. https://doi.org/10.
1016/j.ijforecast.2021.03.004
Nair, V., Hinton, G. E. (2010). Rectified Linear Units
Improve Restricted Boltzmann Machines. Proceedings
of the 27 th International Conference on Machine
Learning, Haifa, Israel, 2010. ACM.
Niknam, A., Zare, H. K., Hosseininasab, H., Mostafaeipour,
A., Herrera, M. (2022). A Critical Review of Short-
Term Water Demand Forecasting Tools—What
Method Should I Use? Sustainability, 14(9), 5412.
MDPI. https://doi.org/10.3390/su14095412
Oreshkin, B. N., Carpov, D., Chapados, N., Bengio, Y.
(2020). N-BEATS: Neural basis expansion analysis
for interpretable time series forecasting.
(arXiv:1905.10437). arXiv. https://doi.org/10.48550/
arXiv.1905.10437
Ristow, D. C. M., Henning, E., Kalbusch, A., Petersen, C.
E. (2021). Models for forecasting water demand using
time series analysis: A case study in Southern Brazil.
Journal of Water, Sanitation and Hygiene for
Development, 11(2), 231-240. IWA PUBLISHING.
https://doi.org/10.2166/washdev.2021.208
Salloom, T., Kaynak, O., He, W. (2021). A novel deep
neural network architecture for real-time water demand
forecasting. Journal of Hydrology, 599, 126353.
ELSEVIER. https://doi.org/10.1016/j.jhydrol.2021.
126353
Sarmas, E., Spiliotis, E., Marinakis, V., Tzanes, G.,
Kaldellis, J. K., Doukas, H. (2022). ML-based energy
management of water pumping systems for the
application of peak shaving in small-scale islands.
Sustainable Cities and Society, 82, 103873.
ELSEVIER. https://doi.org/10.1016/j.scs.2022.103873