0 10 20 30 40 50 60 70 80 90 100
Time(s)
0
2
4
6
8
T(N)
T
1
0 10 20 30 40 50 60 70 80 90 100
Time(s)
0
2
4
6
L(N)
(a)
0 10 20 30 40 50 60 70 80 90 100
Time(s)
40
60
80
100
(°)
0 10 20 30 40 50 60 70 80 90 100
Time(s)
0
2
4
6
8
V
a
(m/s)
(b)
Figure 6: Control inputs: (a) thrust and lift forces; (b) tilt
angle and airspeed.
REFERENCES
Beard, R. W. and McLain, T. W. (2012). Small Unmanned
Aircraft Theory and Practice. Princeton University
Press.
Chen, C., Zhang, J., Wang, N., Shen, L., and Li, Y.
(2021). Conversion control of a tilt tri-rotor un-
manned aerial vehicle with modeling uncertainty. In-
ternational Journal of Advanced Robotic Systems,
18:172988142110270.
Ducard, G. J. and Allenspach, M. (2021). Review of de-
signs and flight control techniques of hybrid and con-
vertible vtol uavs. Aerospace Science and Technology,
118:107035.
Flores, G. and Lozano, R. (2013). Transition flight
control of the quad-tilting rotor convertible mav.
pages 789–794. IEEE. a nonlinear control strat-
egy based on saturations and Lyapunov design is
given¡br/¿¡br/¿stabilize the altitude z with a bounded
control input, we will use the nested saturation control
approach.
Flores, G. R., Escare
˜
no, J., Lozano, R., and Salazar, S.
(2012). Quad-tilting rotor convertible mav: Modeling
and real-time hover flight control. Journal of Intelli-
gent & Robotic Systems, 65:457–471.
Govdeli, Y., Muzaffar, S. M. B., Raj, R., Elhadidi, B., and
Kayacan, E. (2019). Unsteady aerodynamic mod-
eling and control of pusher and tilt-rotor quadplane
configurations. Aerospace Science and Technology,
94:105421.
Hegde, N. T., George, V., Nayak, C. G., and Kumar, K.
(2019). Design, dynamic modelling and control of
tilt-rotor uavs: a review. International Journal of In-
telligent Unmanned Systems, 8:143–161.
Hernandez-Garcia, R. G. and Rodriguez-Cortes, H. (2015).
Transition flight control of a cyclic tiltrotor uav based
on the gain-scheduling strategy. pages 951–956.
IEEE.
Kim, J., Kim, S., Ju, C., and Son, H. I. (2019). Unmanned
aerial vehicles in agriculture: A review of perspective
of platform, control, and applications. IEEE Access,
7:105100–105115.
Li, X., Tan, J., Liu, A., Vijayakumar, P., Kumar, N., and
Alazab, M. (2021). A novel uav-enabled data col-
lection scheme for intelligent transportation system
through uav speed control. IEEE Transactions on In-
telligent Transportation Systems, 22:2100–2110.
Papachristos, C., Alexis, K., and Tzes, A. (2012). Towards
a high-end unmanned tri-tiltrotor: design, modeling
and hover control. pages 1579–1584. IEEE.
Papachristos, C., Alexis, K., and Tzes, A. (2013). Lin-
ear quadratic optimal trajectory-tracking control of a
longitudinal thrust vectoring-enabled unmanned tri-
tiltrotor. IECON Proceedings (Industrial Electronics
Conference), pages 4174–4179.
Phung, D.-K. and Morin, P. (2014). Control of a new con-
vertible uav with a minimal sensor suite. volume
2015-Febru, pages 229–235. IEEE.
Prouty, R. W. (2002). Helicopter Performance, Stability and
Control.
Saeed, A. S., Younes, A. B., Cai, C., and Cai, G. (2018). A
survey of hybrid unmanned aerial vehicles. Progress
in Aerospace Sciences, 98:91–105.
Saeed, A. S., Younes, A. B., Islam, S., Dias, J., Seneviratne,
L., and Cai, G. (2015). A review on the platform de-
sign, dynamic modeling and control of hybrid uavs.
pages 806–815. IEEE.
Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z.,
Almaita, E., Khalil, I., Othman, N. S., Khreishah, A.,
and Guizani, M. (2019). Unmanned aerial vehicles
(uavs): A survey on civil applications and key re-
search challenges. IEEE Access, 7:48572–48634.
Su, J., Su, C., Xu, S., and Yang, X. (2019). A multi-
body model of tilt-rotor aircraft based on kane’s
method. International Journal of Aerospace Engi-
neering, 2019:1–10.
Ta, D. A., Fantoni, I., and Lozano, R. (2012). Modeling
and control of a tilt tri-rotor airplane. pages 131–136.
IEEE. This paper is used to cite the woks used for
controlling TRUAV.
Modeling SMC Based Trajectory Tracking for a Tilt-Rotor Convertible UAV
103