Bucaioni, A., Cicchetti, A., and Ciccozzi, F. (2022). Mod-
elling in low-code development: a multi-vocal sys-
tematic review. Software and Systems Modeling, 21.
Gissl
´
en, L., Eakins, A., Gordillo, C., Bergdahl, J., and Toll-
mar, K. (2021). Adversarial reinforcement learning
for procedural content generation. In Proc. of CoG’21,
pages 1–8. IEEE.
Glavin, F. G. and Madden, M. G. (2015). Adaptive shooting
for bots in first person shooter games using reinforce-
ment learning. IEEE Trans. Comput. Intell. AI Games,
7(2):180–192.
Godefroid, P., Levin, M. Y., and Molnar, D. (2012).
SAGE: Whitebox fuzzing for security testing. Queue,
10(1):20:20–20:27.
Godoy, C. P., Cruz, A. F., Silva, E. P., Santos, L. M.,
Zerbini, R. S., and Pahins, C. A. L. (2019). Blueprint
model: A new approach to scrum agile methodology.
In 14th International Conference on Global Software
Engineering (ICGSE), pages 95–99.
Gordillo, C., Bergdahl, J., Tollmar, K., and Gissl
´
en, L.
(2021). Improving playtesting coverage via curios-
ity driven reinforcement learning agents. In Proc. of
CoG’21, pages 1–8. IEEE.
Gudmundsson, S. F. et al. (2018). Human-like playtesting
with deep learning. In Proc. of CIG’18, pages 1–8.
IEEE.
Irshad, M., Britto, R., and Petersen, K. (2021). Adapt-
ing behavior driven development (bdd) for large-scale
software systems. Journal of Systems and Software,
177:110944.
Juliani, A., Berges, V.-P., Teng, E., Cohen, A., Harper, J.,
Elion, C., Goy, C., Gao, Y., Henry, H., Mattar, M.,
and Lange, D. (2018). Unity: A general platform for
intelligent agents.
Koo, J., Saumya, C., Kulkarni, M., and Bagchi, S. (2019).
PySE: Automatic worst-case test generation by re-
inforcement learning. In ICST’19, pages 136–147.
IEEE.
Luo, Y., Liang, P., Wang, C., Shahin, M., and Zhan, J.
(2021). Characteristics and challenges of low-code
development: The practitioners’ perspective. In Pro-
ceedings of the 15th ACM International Symposium
on Empirical Software Engineering and Measurement
(ESEM).
Noll, J., Beecham, S., Richardson, I., and Canna, C. N.
(2016). A global teaming model for global software
development governance: A case study. In 11th Inter-
national Conference on Global Software Engineering
(ICGSE), pages 179–188.
Paduraru, C., Melemciuc, M., and Stefanescu, A. (2017). A
distributed implementation using Apache Spark of a
genetic algorithm applied to test data generation. In
GECCO’17 Workshops, pages 1857–1863. ACM.
Paduraru, C. and Paduraru, M. (2019). Automatic difficulty
management and testing in games using a framework
based on behavior trees and genetic algorithms. In
Pang, J. and Sun, J., editors, 24th International Con-
ference on Engineering of Complex Computer Sys-
tems, pages 170–179. IEEE.
Paduraru, C., Paduraru, M., and Stefanescu, A. (2020). Op-
timizing decision making in concolic execution using
reinforcement learning. In ICST’20 Workshops, pages
52–61. IEEE.
Paduraru, C., Paduraru, M., and Stefanescu, A. (2021a).
Automated game testing using computer vision meth-
ods. In 2021 36th IEEE/ACM International Confer-
ence on Automated Software Engineering Workshops
(ASEW), pages 65–72.
Paduraru, C., Paduraru, M., and Stefanescu, A. (2021b).
RiverFuzzRL - an open-source tool to experiment
with reinforcement learning for fuzzing. In 14th IEEE
Conference on Software Testing, Verification and Val-
idation (ICST), pages 430–435.
Paduraru, C., Paduraru, M., and Stefanescu, A. (2022).
Rivergame - a game testing tool using artificial intelli-
gence. In 2022 IEEE Conference on Software Testing,
Verification and Validation (ICST), pages 422–432.
Pasternak, M., Kahani, N., Bagherzadeh, M., Dingel, J., and
Cordy, J. R. (2018). Simgen: A tool for generating
simulations and visualizations of embedded systems
on the unity game engine. In ACM/IEEE International
Conference on Model Driven Engineering Languages
and Systems, MODELS ’18, page 42–46.
Piveta, E. K. and Zancanella, L. C. (2003). Observer pattern
using aspect-oriented programming. Scientific Litera-
ture Digital Library.
Politowski, C., Petrillo, F., and Gu
´
eh
´
eneuc, Y.-G. (2021).
A survey of video game testing. In 2021 IEEE/ACM
International Conference on Automation of Software
Test (AST), pages 90–99.
Tastan, B. and Sukthankar, G. (2011). Learning policies for
first person shooter games using inverse reinforcement
learning. In Proc. of AIIDE’11, pages 85––90. AAAI.
Waszkowski, R. (2019). Low-code platform for automat-
ing business processes in manufacturing. IFAC-
PapersOnLine, 52(10):376–381. IMS 2019.
Yang, X., Zou, D., Pei, L., Sartori, D., and Yu, W. (2019).
An efficient simulation platform for testing and val-
idating autonomous navigation algorithms for multi-
rotor uavs based on unreal engine. In China Satellite
Navigation Conference, pages 527–539. Springer.
Zhang, H., Li, W., Ding, H., Yi, C., and Wan, X. (2017).
Observer-pattern modeling and nonlinear modal anal-
ysis of two-stage boost inverter. IEEE Transactions
on Power Electronics, 33(8):6822–6836.
Zheng, Y., Xie, X., Su, T., Ma, L., Hao, J., Meng, Z., Liu, Y.,
Shen, R., Chen, Y., and Fan, C. (2019). Wuji: Auto-
matic online combat game testing using evolutionary
deep reinforcement learning. In 2019 34th IEEE/ACM
International Conference on Automated Software En-
gineering (ASE), pages 772–784.
ICSOFT 2023 - 18th International Conference on Software Technologies
162