Frey B.J., Dueck D. (2007). Clustering by Passing
Messages between Data Points. In Science, vol. 315,
issue 5814. JSTOR, pp. 972-976.
Gansukh C., Yoo K.H, Bazarbaev M., Nasridinov A.
(2021). Feasibility Study of Outlier Detection in Smart
Manufacturing Applications. In Advances in Intelligent
Information Hiding and Multimedia Signal Processing:
Proceeding of the 16th International Conference on
IIHMSP in conjunction with the 13th international
conference on FITAT, vol.2, November 5-7, 2020,
Vietnam. Springer, pp.283-290.
Gopali Saroj, Namin A.S. (2022). Deep Learning-Based
Time-Series Analysis for Detecting Anomalies in
Internet of Things. In Electronics, vol. 11, MDPI, pp.
1-16 .
Gutschi C., Furian N., Suschnigg J., Neubacher D,
Voessner S. (2018). Log-based predictive maintenance
in discrete parts manufacturing. In Procedia CIRP,
vol.79. ELSEVIER, pp. 528-533.
Hunaidi O., Chu W.T., (1999), Acoustical characteristics
of leak signals in plastic water distribution pipes. In
Applied Acoustics, vol. 58. ELSEVIER, pp. 235-254
Kammoun M., Kammoun A., Abid M. (2022). Experiments
based comparative evaluations of machine learning
techniques for leak detection in water distribution
systems. In Water Supply, vol.22, Issue 1. IWA
PUBLISHING, pp. 628–642.
Kammoun M., Kammoun A., Abid M.
(2022). LSTM-AE-WLDL: Unsupervised LSTM
Auto-Encoders for Leak Detection and Location
in Water Distribution Networks. In Water Resources
Management, vol.37, Issue 2. Springer, pp.731-746.
Klise K., A., Murray, R., Haxton, T. (2018). An Overview
of the Water Network Tool for Resilience (WNTR).
Leu S.S., Bui Q.N. (2016). Leak Prediction Model for
Water Distribution Networks Created Using a Bayesian
Network Learning Approach. In Water Resources
Management, vol. 30. Springer, pp.2719-2733.
Lijuan W., Hongwei Z., Zhiguang N. (2012). Leakage
Prediction Model Based on RBF Neural Network. In
Software Engineering and Knowledge Engineering:
Theory and Practice, vol 114. Springer, pp 451-458.
F.T., Ting K.M., Zhou Z.H. (2008). Isolation Forest. In
2008 Eighth IEEE International Conference on Data
Mining. IEEE Computer Society, pp. 413-422
Liu F.T., Ting K.M., Zhou Z.H. (2012). Isolation-Based
Anomaly Detection. In ACM Transactions on
Knowledge Discovery from Data (TKDD), vol.6, Issue
1, No. 3. ACM, pp.1-39.
Naiades Project. A holistic water ecosystem for digitization
of urban water sector. Available online: https://
www.naiades-project.eu/ (Accessed on 20 January
2023).
Otte T., Posada-Moreno A.F., Hubenthal F., Habler M.,
Bartels H., Abdelrazeq A., Hees F. (2022). Condition
Monitoring of Rail Infrastructure and Rolling Stock
using Acceleration Sensor Data of on-Rail Freight
Wagons. In Proceedings of the 11th International
Conference on Pattern Recognition Applications and
Methods (ICPRAM 2022). SCITEPRESS, pp.432-439.
Pearson, D. (2019). Standard Definition for Water Losses,
IWA Publishing, London.
Perez R., Sanz G., Puig V., Quevedo J., Escofet M..C.,
Nejjari F., Meseguer J., Cembrano G., Tur, J.M.M.,
Sarrate R. (2014). Leak Localization in Water
Networks A Model-Based Methodology Using
Pressure Sensors Applied to a Real Network in
Barcelona. In IEEE Control Systems Magazine, vol.34,
issue 4. Applications of Control, pp.24-36.
Philips S.J. (2002). Acceleration of K-Means and Related
Clustering Algorithms. In Algorithm Engineering and
Experiments, 4th International Workshop, ALENEX
2002, San Francisco, CA, USA, January 4-5, 2002,
Springer, pp.166-177.
Scikit-learn, Scikit-learn:machine learning in Python, 1.2.2.
Available online: scikit-learn: machine learning in
Python — scikit-learn 1.2.2 documentation (Accessed
on 3 April 2023).
Rosner B., (1983). Percentage Points for a Generalized
ESD Many Outlier Procedure. In Technometrics,
vol.25, No. 2. ASQ, pp.165-172.
Shukla S., Naganna S. (2014). A Review on K-Means Data
Clustering Approach. In International Journal of
Information & Computation Technology, vol.4, No.17,
Springer, pp.1847-1860
Tornyeviadzi H.S., Seidu R. (2023). Leakage detection in
water distribution networks via 1D CNN deep
autoencoder for multivariate SCADA data. In
Engineering Applications of Artificial Intelligence,
vol.122. ELSEVIER.
Vrachimis G.S., Kyriakou M.S., Eliades D.G.,Polycarpou
M. M., (2018). LeakDB: A benchmark dataset for
leakage diagnosis in water distribution networks. In 1
st
International WDSA / CCWI 2018 Joint Conference.
Wan X., Kuhanestani P.K., Farmani R., Keedwell E.
(2022). Literature Review of Data Analytics for Leak
Detection in Water Distribution Networks: A Focus on
Pressure and Flow Smart Sensors. In Journal of Water
Resources Planning and Management, vol.148, issue
10, ASCE.
Wang L. Liu Y., Yin H., Sun W. (2022). Fault diagnosis
and predictive maintenance for hydraulic system based
on digital twin model. In AIP Advances, vol. 12. AIP
Publishing.
Wang W., Sun H., Guo J., Lao L., Wu S., Zhang J. (2021).
Experimental study on water pipeline leak using In-
Pipe acoustic signal analysis and artificial neural
network prediction. In Measurement, vol.186.
ELSEVIER.
Xu D., Tian Y. (2015). A Comprehensive Survey of
Clustering Algorithms. In Annals of Data Science,
vol.2, No. 2. Springer, pp.165-193.
Yu T., Chen X., Yan W., Xu Z., Ye M. (2023). Leak
detection in water distribution systems by classifying
vibration signals. In Mechanical Systems and Signal
Processing, vol. 185. ELSEVIER.