Calders, T., Goethals, B., and Jaroszewicz, S. (2006). Min-
ing rank-correlated sets of numerical attributes. In
KDD, pages 96–105.
Crawford, J., Ginsberg, M. L., Luck, E., and Roy, A. (1996).
Symmetry-breaking predicates for search problems.
In Principles of Knowledge Representation and Rea-
soning (KR’96), pages 148–159.
Di-Jorio, L., Laurent, A., and Teisseire, M. (2008). Fast ex-
traction of gradual association rules: a heuristic based
method. In CSTST 2008: Proceedings of the 5th In-
ternational Conference on Soft Computing as Trans-
disciplinary Science and Technology, Cergy-Pontoise,
France, October 28-31, 2008, pages 205–210.
Di-Jorio, L., Laurent, A., and Teisseire, M. (2009). Min-
ing frequent gradual itemsets from large databases. In
Advances in Intelligent Data Analysis VIII, 8th Inter-
national Symposium on Intelligent Data Analysis, IDA
2009, Lyon, France, August 31 - September 2, 2009.
Proceedings, pages 297–308.
Do, T. D. T., Laurent, A., and Termier, A. (2010). PGLCM:
efficient parallel mining of closed frequent gradual
itemsets. In ICDM, pages 138–147.
Do, T. D. T., Termier, A., Laurent, A., N
´
egrevergne, B.,
Tehrani, B. O., and Amer-Yahia, S. (2015). PGLCM:
efficient parallel mining of closed frequent gradual
itemsets. Knowl. Inf. Syst., 43(3):497–527.
E
´
en, N. and S
¨
orensson, N. (2003). An extensible sat-solver.
pages 502–518.
En, N. and S
¨
orensson, N. (2003). An extensible SAT-solver.
pages 502–518.
Fan, C. and Xiao, F. (2017). Mining gradual patterns in
big building operational data for building energy ef-
ficiency enhancement. Energy Procedia, 143:119 –
124. Leveraging Energy Technologies and Policy Op-
tions for Low Carbon Cities.
Hidouri, A., Jabbour, S., Raddaoui, B., and Yaghlane, B. B.
(2021). Mining closed high utility itemsets based
on propositional satisfiability. Data Knowl. Eng.,
136:101927.
Huang, J. The effect of restarts on the efficiency of clause
learning. pages 2318–2323.
H
¨
ullermeier, E. (2002). Association rules for expressing
gradual dependencies. In Principles of Data Mining
and Knowledge Discovery, 6th European Conference,
PKDD 2002, Helsinki, Finland, August 19-23, 2002,
Proceedings, pages 200–211.
Jabbour, S., Lonlac, J., Sais, L., and Salhi, Y. (2014). Revis-
iting the learned clauses database reduction strategies.
CoRR, abs/1402.1956.
Jabbour, S., Sais, L., and Salhi, Y. (2013). The top-
k frequent closed itemset mining using top-k SAT
problem. In Machine Learning and Knowledge Dis-
covery in Databases - European Conference, ECML
PKDD 2013, Prague, Czech Republic, September 23-
27, pages 403–418.
Kaytoue, M., Kuznetsov, S. O., and Napoli, A. (2011). Re-
visiting numerical pattern mining with formal concept
analysis. In IJCAI, pages 1342–1347.
Kendall, M. and Smith, B. (1939). The problem of m rank-
ings. In The annals of mathematical statistics - Volume
10, pages 275–287.
Laurent, A., Lesot, M., and Rifqi, M. (2009). GRAANK:
exploiting rank correlations for extracting gradual
itemsets. In Flexible Query Answering Systems, 8th
International Conference, FQAS 2009, Roskilde, Den-
mark, October 26-28, 2009. Proceedings, pages 382–
393.
Laurent, A., N
´
egrevergne, B., Sicard, N., and Termier, A.
(2010). Pgp-mc: Towards a multicore parallel ap-
proach for mining gradual patterns. In DASFAA, Part
I, pages 78–84.
Lonlac, J. and Mephu Nguifo, E. (2017). Towards learned
clauses database reduction strategies based on domi-
nance relationship. CoRR, abs/1705.10898.
Lonlac, J., Miras, Y., Beauger, A., Mazenod, V., Peiry, J.-
L., and Mephu, E. (2018). An approach for extract-
ing frequent (closed) gradual patterns under temporal
constraint. In FUZZ-IEEE, pages 878–885.
Lonlac, J., Miras, Y., Beauger, A., Pailloux, M., Peiry, J.-L.,
and Nguifo, E. M. (2017). Une approche d’extraction
de motifs graduels (ferm
´
es) fr
´
equents sous contrainte
de la temporalit
´
e. Revue des Nouvelles Technologies
de l’Information, Extraction et Gestion des Connais-
sances, RNTI-E-33:213–224.
Masseglia, F., Laurent, A., and Teisseire, M. (2008). Grad-
ual trends in fuzzy sequential patterns. In In IPMU,
pages 456–463.
Moskewicz, M. W., Madigan, C. F., Zhao, Y., Zhang, L.,
and Malik, S. (2001). Chaff: Engineering an efficient
SAT solver. In Proceedings of the 38th Design Au-
tomation Conference (DAC’01), pages 530–535.
N
´
egrevergne, B., Termier, A., Rousset, M., and M
´
ehaut, J.
(2014). Para miner: a generic pattern mining algo-
rithm for multi-core architectures. DMKD, 28(3):593–
633.
Ngo, T., Georgescu, V., Laurent, A., Libourel, T., and
Mercier, G. (2018). Mining spatial gradual patterns:
Application to measurement of potentially avoidable
hospitalizations. In SOFSEM, pages 596–608.
Oudni, A., Lesot, M., and Rifqi, M. (2013). Processing
contradiction in gradual itemset extraction. In FUZZ-
IEEE, pages 1–8.
Ramakrishnan, S. and Rakesh, A. (1996). Mining quanti-
tative association rules in large relational tables. SIG-
MOD Rec., 25(2):1–12.
Salleb-Aouissi, A., Vrain, C., and Nortet, C. (2007). Quant-
miner: A genetic algorithm for mining quantitative as-
sociation rules. In IJCAI, pages 1035–1040.
Silva, J. P. M. and Lynce, I. (2007). Towards robust cnf en-
codings of cardinality constraints. In CP, pages 483–
497.
Tseitin, G. (1968). On the complexity of derivations in the
propositional calculus. In Slesenko, H., editor, Struc-
tures in Constructives Mathematics and Mathematical
Logic, Part II, pages 115–125.
Warners, J. P. (1998). A linear-time transformation of linear
inequalities into conjunctive normal form. Informa-
tion Processing Letters, 68(2):63 – 69.
Zhang, L., Madigan, C. F., Moskewicz, M. W., and Malik,
S. (2001). Efficient conflict driven learning in Boolean
satisfiability solver. In IEEE/ACM CAD’2001, pages
279–285.
Extracting Frequent Gradual Patterns Based on SAT
143