6 CONCLUSION
This study evaluates the impact of various word-level
text augmentation methods on a hybrid CNN-GRU
model with BERT representation for sentiment
analysis of Indonesian hotel reviews. Our simulations
show that the performance of each word-level text
augmentation method varied across the datasets. All
five word-level text augmentation methods (RS, RD,
RC, FE, and LM) yielded higher precision and
specificity than the baseline method. The methods
increase the precision and specificity on average as
much as 0.94% and 2.64% for the Traveloka dataset,
1.28% and 4.37% for the Tiket.com dataset, and
4.71% and 25.58% for the Pegi Pegi dataset. The RS
method achieved the highest results for precision and
specificity, yielding the most optimal performance on
two datasets.
ACKNOWLEDGEMENT
The Directorate of Research and Development,
Universitas Indonesia, funded this research under
Hibah PUTI 2023 (Grant No. NKB-
476/UN2.RST/HKP.05.00/2023).
REFERENCES
Badan Pusat Statistik. (2022). Tingkat penghunian kamar
pada hotel bintang. Retrieved from https://www.
bps.go.id/indicator/16/122/1/tingkat-penghunian-
kamar-pada-hotel-bintang.html
Bayer, M., Kaufhold, M.-A., & Reuter, C. (2022). A survey
on data augmentation for text classification. arXiv
preprint arXiv:2107.03158.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019).
BERT: Pre-training of deep bidirectional transformers
for language understanding. In Proceedings of the 2019
Conference of the North, pages 4171–4186.
Gore, R. J., Diallo, S., & Padilla, J. (2015). You are what
you tweet: Connecting the geographic variation in
America's obesity rate to Twitter content. PLoS ONE,
10(9).
Gowandi, T., Murfi, H., & Nurrohmah, S. (2021).
Performance analysis of hybrid architectures of deep
learning for Indonesian sentiment analysis. In Soft
Computing in Data Sciences, pages 18-27.
Liu, B. (2015). Sentiment analysis: Mining opinions,
sentiments, and emotions. Cambridge: Cambridge
University Press.
urfi, H., Syamsyuriani, , Gowandi, T., Ardaneswari, G., &
Nurrohmah, S. (2022). Bert-based combination of
convolutional and recurrent neural network for
Indonesian sentiment analysis. arXiv preprint
arXiv:2211.05273.
Padilla, J. J., Kavak, H., Lynch, C. J., Gore, R. J., & Diallo,
S. Y. (2018). Temporal and spatiotemporal
investigation of tourist attraction visit sentiment on
Twitter. PLoS ONE, 13(6).
Sun, F., Chu, N., & Du, X. (2020). Sentiment analysis of
hotel reviews based on deep learning. In International
Conference on Robots & Intelligent Systems (ICRIS),
pages 627–630.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017).
Attention is all you need. In Proceedings of the 31st
International Conference on Neural Information
Processing Systems, pages 6000–6010.
Wei, J., & Zou, K. (2019). EDA: Easy data augmentation
techniques for boosting performance on text
classification tasks. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages
6381–6387.
Wilie, B., Vincentio, K., Winata, G. I., Cahyawijaya, S., Li,
X., Lim, Z. Y., Soleman, S., Mahendra, R., Fung, P.,
Bahar, S., & Purwarianti, A. (2020). IndoNLU:
Benchmark and resources for evaluating Indonesian
natural language understanding. In Proceedings of the
1st Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics and the 10th
International Joint Conference on Natural Language
Processing, pages 843-857.
World Travel & Tourism Council. (2018). Travel & tourism
power and performance. London, UK: World Travel &
Tourism Council.
Zhang, L., Wang, S., & Liu, B. (2018). Deep learning for
sentiment analysis: A survey. WIREs Data Mining and
Knowledge Discovery, 8(4).