learning for zero-day malware detection. In 2013 Pro-
ceedings IEEE INFOCOM, pages 2022–2030.
Demetrio, L., Biggio, B., Lagorio, G., Roli, F., and Ar-
mando, A. (2019). Explaining vulnerabilities of
deep learning to adversarial malware binaries. ArXiv,
abs/1901. 03583.
Demetrio, L., Biggio, B., Lagorio, G., Roli, F., and Ar-
mando, A. (2021). Functionality-preserving black-
box optimization of adversarial windows malware.
IEEE Transactions on Information Forensics and Se-
curity, 16:3469–3478.
Ebrahimi, M., Zhang, N., Hu, J., Raza, M. T., and
Chen, H. (2020). Binary black-box evasion attacks
against deep learning-based static malware detectors
with adversarial byte-level language model. CoRR,
abs/2012.07994.
Edmonds, E. (2020). Three-quarters of americans ”afraid”
to ride in a self-driving vehicle.
Erko, A. (2022). Malware sandbox evasion: Techniques,
principles & solutions.
Fang, Y., Zeng, Y., Li, B., Liu, L., and Zhang, L. (2020).
Deepdetectnet vs rlattacknet: An adversarial method
to improve deep learning-based static malware detec-
tion model. Plos one, 15(4):e0231626.
Gibert, D., Mateu, C., and Planes, J. (2020). The rise of
machine learning for detection and classification of
malware: Research developments, trends and chal-
lenges. Journal of Network and Computer Applica-
tions, 153:102–526.
Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter,
M. A., and Kagal, L. (2018). Explaining explanations:
An approach to evaluating interpretability of machine
learning. CoRR, abs/1806.00069.
Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). Ex-
plaining and harnessing adversarial examples. In
3rd International Conference on Learning Represen-
tations (ICLR).
Grosse, K., Papernot, N., Manoharan, P., Backes, M., and
McDaniel, P. (2017). Adversarial examples for mal-
ware detection. In Computer Security – ESORICS
2017, pages 62–79, Cham. Springer, Springer Inter-
national Publishing.
Hu, W. and Tan, Y. (2017). Generating adversarial malware
examples for black-box attacks based on gan. CoRR,
abs/1702. 05983.
Huang, L., Joseph, A. D., Nelson, B., Rubinstein, B. I., and
Tygar, J. D. (2011). Adversarial machine learning.
In Proceedings of the 4th ACM Workshop on Secu-
rity and Artificial Intelligence, AISec ’11, page 43–58,
New York, NY, USA. Association for Computing Ma-
chinery.
Juravle, G., Boudouraki, A., Terziyska, M., and Rezlescu,
C. (2020). Trust in artificial intelligence for medical
diagnoses. Progress in Brain Research, 253:263–282.
Karl Bridge, M. (2019). Pe format - win32 apps.
Kolosnjaji, B., Demontis, A., Biggio, B., Maiorca, D., Gi-
acinto, G., Eckert, C., and Roli, F. (2018). Adversar-
ial malware binaries: Evading deep learning for mal-
ware detection in executables. In 2018 26th European
signal processing conference (EUSIPCO), pages 533–
537. IEEE.
Koz
´
ak, M., Jure
ˇ
cek, M., and L
´
orencz, R. (2022). Genera-
tion of adversarial malware and benign examples us-
ing reinforcement learning. In Cybersecurity for Arti-
ficial Intelligence, pages 3–25. Springer.
Koz
´
ak, M. (2023). Application of reinforcement learning to
creating adversarial malware samples. Master’s the-
sis, Czech Technical University in Prague, Faculty of
Information Technology.
Kreuk, F., Barak, A., Aviv-Reuven, S., Baruch, M., Pinkas,
B., and Keshet, J. (2018). Deceiving end-to-end deep
learning malware detectors using adversarial exam-
ples. arXiv preprint arXiv:1802.04528.
Marius, H. (2020). Overview: State-of-the-art machine
learning algorithms per discipline and per task.
Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik,
Z. B., and Swami, A. (2016). The limitations of deep
learning in adversarial settings. In 2016 IEEE Euro-
pean symposium on security and privacy (EuroS&P),
pages 372–387. IEEE.
Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro,
B., and Nicholas, C. (2017). Malware detection by
eating a whole exe. CoRR.
Silver, D., Schrittwieser, J., Simonyan, K., Huang, A.,
Guez, A., Hubert, T., Baker, L., Lai, M., Bolton,
A., Antonoglou, I., et al. (2017). Mastering the
game of go without human knowledge. Nature,
550(7676):354–359.
Song, W., Li, X., Afroz, S., Garg, D., Kuznetsov, D., and
Yin, H. (2022). Mab-malware: a reinforcement learn-
ing framework for blackbox generation of adversarial
malware. In Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Secu-
rity, pages 990–1003, New York, NY, USA. Associa-
tion for Computing Machinery.
Ucci, D., Aniello, L., and Baldoni, R. (2019). Survey of ma-
chine learning techniques for malware analysis. Com-
puters & Security, 81:123–147.
Yang, C., Xu, J., Liang, S., Wu, Y., Wen, Y., Zhang, B., and
Meng, D. (2021). Deepmal: maliciousness-preserving
adversarial instruction learning against static malware
detection. Cybersecurity, 4(1):1–14.
Yuceel, H. C. (2022). Virtualization/sandbox evasion - how
attackers avoid malware analysis.
SECRYPT 2023 - 20th International Conference on Security and Cryptography
786