ing point numbers and thus would need to use the
GPU; how interpreters work in this area could be an
interesting future line of work. This, along with test-
ing different versions of the interpreters as they are
published, will be the subject of future research.
ACKNOWLEDGEMENTS
This work is supported by the Ministerio espa
˜
nol
de Econom
´
ıa y Competitividad (Spanish Ministry of
Competitivity and Economy) under project PID2020-
115570GB-C22 (DemocratAI::UGR).
REFERENCES
Abdelhafez, A., Alba, E., and Luque, G. (2019). A
component-based study of energy consumption for se-
quential and parallel genetic algorithms. The Journal
of Supercomputing, 75:6194–6219.
Cruz, L. (2021). Tools to measure software energy con-
sumption from your computer. https://luiscruz.github.
io/2021/07/20/measuring-energy.html.
de Vega, F. F., Ch
´
avez, F., D
´
ıaz, J., Garc
´
ıa, J. A., Castillo,
P. A., Merelo, J. J., and Cotta, C. (2016). A cross-
platform assessment of energy consumption in evo-
lutionary algorithms. In Handl, J., Hart, E., Lewis,
P. R., L
´
opez-Ib
´
a
˜
nez, M., Ochoa, G., and Paechter,
B., editors, Parallel Problem Solving from Nature –
PPSN XIV, pages 548–557, Cham. Springer Interna-
tional Publishing.
D
´
ıaz-
´
Alvarez, J., Castillo, P. A., Fernandez de Vega, F.,
Ch
´
avez, F., and Alvarado, J. (2022). Population size
influence on the energy consumption of genetic pro-
gramming. Measurement and Control, 55(1-2):102–
115.
Diaz Alvarez, J., Castillo Mart
´
ınez, P. A., Rodr
´
ıguez D
´
ıaz,
F. J., Fern
´
andez de Vega, F., et al. (2018). A fuzzy
rule-based system to predict energy consumption of
genetic programming algorithms.
Doglio, F. Introducing Deno.
ECMA (1999). 262: ECMAScript language specification.
ECMA (European Association for Standardizing In-
formation and Communication Systems), pub-ECMA:
adr,.
Eiben, A. E. and Smith, J. E. (2015). Introduction to evo-
lutionary computing, chapter What is an evolutionary
algorithm?, pages 25–48. Springer.
Fern
´
andez de Vega, F., D
´
ıaz, J., Garc
´
ıa, J.
´
A., Ch
´
avez, F.,
and Alvarado, J. (2020). Looking for energy effi-
cient genetic algorithms. In Idoumghar, L., Legrand,
P., Liefooghe, A., Lutton, E., Monmarch
´
e, N., and
Schoenauer, M., editors, Artificial Evolution, pages
96–109, Cham. Springer International Publishing.
Flanagan, D. (1998). JavaScript. O’Reilly.
Garc
´
ıa-Mart
´
ın, E., Rodrigues, C. F., Riley, G., and Grahn,
H. (2019). Estimation of energy consumption in ma-
chine learning. Journal of Parallel and Distributed
Computing, 134:75–88.
Gonz
´
alez, J., Merelo-Guerv
´
os, J.-J., Castillo, P. A., Rivas,
V., Romero, G., and Prieto, A. (1999). Optimized web
newspaper layout using simulated annealing. In Mira,
J. and S
´
anchez-Andr
´
es, J. V., editors, Engineering Ap-
plications of Bio-Inspired Artificial Neural Networks,
International Work-Conference on Artificial and Nat-
ural Neural Networks, IWANN ’99, Alicante, Spain,
June 2-4, 1999, Proceedings, Volume II, volume 1607
of Lecture Notes in Computer Science, pages 759–
768. Springer.
Goodman, D., Morrison, M., and Eich, B. (2007).
JavaScript® Bible. John Wiley & Sons, Inc. New
York, NY, USA.
H
¨
ahnel, M., D
¨
obel, B., V
¨
olp, M., and H
¨
artig, H. (2012).
Measuring energy consumption for short code paths
using rapl. SIGMETRICS Perform. Eval. Rev.,
40(3):13–17.
Kelley, A. (2019). Introduction to the Zig programming
language. https://andrewkelley.me/post/intro-to-zig.
html.
Khan, K. N., Nyb
¨
ack, F., Ou, Z., Nurminen, J. K., Niemi,
T., Eulisse, G., Elmer, P., and Abdurachmanov, D.
(2015). Energy profiling using IgProf. In 2015
15th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, pages 1115–1118. IEEE.
Koomey, J. G., Berard, S., Sanchez, M., and Wong, H.
(2011). Web extra appendix: implications of historical
trends in the electrical efficiency of computing. IEEE
Annals of the History of Computing, 33(3):S1–S30.
Kurp, P. (2008). Green computing. Communications of the
ACM, 51(10):11–13.
K
¨
ohler, S., Herzog, B., H
¨
onig, T., Wenzel, L., Plauth,
M., Nolte, J., Polze, A., and Schr
¨
oder-Preikschat,
W. (2020). Pinpoint the Joules: Unifying runtime-
support for energy measurements on heterogeneous
systems. In 2020 IEEE/ACM International Workshop
on Runtime and Operating Systems for Supercomput-
ers (ROSS), pages 31–40.
Langdon, W. (2004). Global Distributed Evolution of L-
Systems Fractals. In Genetic Programming: 7th Euro-
pean Conference, EuroGP 2004, Coimbra, Portugal,
April 5-7, 2004, Proceedings, volume 7, pages 349–
358. Springer.
Merelo, J. J., Castillo, P. A., Blancas, I., Romero, G.,
Garc
´
ıa-S
´
anchez, P., Fern
´
andez-Ares, A., Rivas, V. M.,
and Valdez, M. G. (2016). Benchmarking languages
for evolutionary algorithms. In Squillero, G. and Bu-
relli, P., editors, Applications of Evolutionary Compu-
tation - 19th European Conference, EvoApplications
2016, Porto, Portugal, March 30 - April 1, 2016, Pro-
ceedings, Part II, volume 9598 of Lecture Notes in
Computer Science, pages 27–41. Springer.
Merelo, J.-J., Garc
´
ıa-Valdez, M., Castillo, P. A., Garc
´
ıa-
S
´
anchez, P., de las Cuevas, P., and Rico, N. (2016).
NodIO, a JavaScript framework for volunteer-based
evolutionary algorithms : first results. ArXiv e-prints.
An Analysis of Energy Consumption of JavaScript Interpreters with Evolutionary Algorithm Workloads
183