ACKNOWLEDGEMENTS
We thank the National Science Foundation and
Amazon Web Services for support from grant IIS-
1741345, which supported the research and the com-
putation in this study.
REFERENCES
Acheampong, F. A., Nunoo-Mensah, H., and Chen, W.
(2021). Transformer models for text-based emotion
detection: a review of bert-based approaches. Artifi-
cial Intelligence Review, 54(8):5789–5829.
Ahmed, A. (2011). Use of social media in disaster manage-
ment.
Alam, F., Alam, T., Hasan, M. A., Hasnat, A., Imran, M.,
and Ofli, F. (2023). Medic: a multi-task learning
dataset for disaster image classification. Neural Com-
puting and Applications, 35(3):2609–2632.
Alam, F., Ofli, F., Imran, M., and Aupetit, M. (2018). A
twitter tale of three hurricanes: Harvey, Irma, and
Maria. arXiv preprint arXiv:1805.05144.
Alam, F., Sajjad, H., Imran, M., and Ofli, F. (2020).
Crisisbench: Benchmarking crisis-related social me-
dia datasets for humanitarian information processing.
arXiv preprint arXiv:2004.06774.
Caragea, C., Silvescu, A., and Tapia, A. H. (2016). Iden-
tifying informative messages in disaster events using
convolutional neural networks. In International con-
ference on information systems for crisis response and
management, pages 137–147.
Chanda, A. K. (2021). Efficacy of bert embeddings on
predicting disaster from twitter data. arXiv preprint
arXiv:2108.10698.
Chen, Z., Li, S., Ye, L., and Zhang, H. (2023). Multi-
label classification of legal text based on label em-
bedding and capsule network. Applied Intelligence,
53(6):6873–6886.
Demotte, P., Wijegunarathna, K., Meedeniya, D., and Per-
era, I. (2021). Enhanced sentiment extraction archi-
tecture for social media content analysis using capsule
networks. Multimedia Tools and Applications, pages
1–26.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.
Dinani, S. T. and Caragea, D. (2021). Disaster image classi-
fication using capsule networks. In 2021 International
Joint Conference on Neural Networks (IJCNN), pages
1–8. IEEE.
Graves, A. and Schmidhuber, J. (2005). Framewise
phoneme classification with bidirectional lstm and
other neural network architectures. Neural networks,
18(5-6):602–610.
Hinton, G. E., Sabour, S., and Frosst, N. (2018). Matrix
capsules with em routing. In International conference
on learning representations.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Imran, M., Castillo, C., Diaz, F., and Vieweg, S. (2018).
Processing social media messages in mass emergency:
Survey summary. In Companion Proceedings of the
The Web Conference 2018, pages 507–511.
Imran, M., Mitra, P., and Castillo, C. (2016). Twit-
ter as a lifeline: Human-annotated twitter corpora
for nlp of crisis-related messages. arXiv preprint
arXiv:1605.05894.
Imran, M., Ofli, F., Caragea, D., and Torralba, A. (2020).
Using ai and social media multimodal content for dis-
aster response and management: Opportunities, chal-
lenges, and future directions.
Joulin, A., Grave, E., Bojanowski, P., and Mikolov, T.
(2016). Bag of tricks for efficient text classification.
arXiv preprint arXiv:1607.01759.
Kabir, M. Y. and Madria, S. (2019). A deep learning ap-
proach for tweet classification and rescue schedul-
ing for effective disaster management. In Proceed-
ings of the 27th ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Sys-
tems, pages 269–278.
Kaliyar, R. K. (2020). A multi-layer bidirectional trans-
former encoder for pre-trained word embedding: A
survey of bert. In 2020 10th International Confer-
ence on Cloud Computing, Data Science & Engineer-
ing (Confluence), pages 336–340. IEEE.
Khajwal, A. B., Cheng, C.-S., and Noshadravan, A. (2023).
Post-disaster damage classification based on deep
multi-view image fusion. Computer-Aided Civil and
Infrastructure Engineering, 38(4):528–544.
Khikmatullaev, A. (2019). Capsule Neural Networks for
Text Classification. Universit¨at Bonn.
Kim, J., Jang, S., Park, E., and Choi, S. (2020). Text clas-
sification using capsules. Neurocomputing, 376:214–
221.
Koren, M. (2017). Using twitter to save a newborn from a
flood. The Atlantic.
Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu,
S., Barnes, L., and Brown, D. (2019). Text classifica-
tion algorithms: A survey. Information, 10(4):150.
Li, H., Caragea, D., Caragea, C., and Herndon, N. (2018).
Disaster response aided by tweet classification with a
domain adaptation approach. Journal of Contingen-
cies and Crisis Management, 26(1):16–27.
Li, X. and Caragea, D. (2020). Domain adaptation with re-
construction for disaster tweet classification. In Pro-
ceedings of the 43rd International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, pages 1561–1564.
Liu, G. and Guo, J. (2019). Bidirectional lstm with attention
mechanism and convolutional layer for text classifica-
tion. Neurocomputing, 337:325–338.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized bert pre-
training approach. arXiv preprint arXiv:1907.11692.
Lu, G., Gan, J., Yin, J., Luo, Z., Li, B., and Zhao, X. (2020).
Multi-task learning using a hybrid representation for
DATA 2023 - 12th International Conference on Data Science, Technology and Applications
162