Fratrič, P., Sileno, G., Klous, S., & van Engers, T. (2022).
Manipulation of the Bitcoin market: an agent-based
study. Financial Innovation, 8(1), 1-29.
Hamrick J., Rouhi F., Mukherjee A., Feder A., Gandal N.,
Moore T., Vasek M. (2019) The economics of
cryptocurrency pump and dump schemes. SSRN
Electron J. https://doi.org/10.2139/ssrn.3303365
Chen W., Xu Y., Zheng Z., Zhou Y., Yang J. E., Bian J.
(2019) Detecting ‘Pump & dump schemes’ on
cryptocurrency market using an improved a priori
algorithm. In: Proceedings—13th IEEE international
conference on service-oriented system engineering,
SOSE 2019, 10th international workshop on joint cloud
computing, JCC 2019 and 2019 IEEE international
workshop on cloud computing in robotic systems,
CCRS 2019, pp 293–298. https://doi.org/10.1109/
SOSE.2019.00050
Victor F., Weintraud A. M. (2021) Detecting and
quantifying wash trading on decentralized
cryptocurrency exchanges. In:The web conference
2021—proceedings of the world wide web conference,
WWW 2021 2, pp 23–32. https://doi.org/10.1145/
3442381.3449824. arXiv:2102.07001
Hamrick J., Rouhi F., Mukherjee A., Feder A., Gandal N.,
Moore T., Vasek M. (2019) The economics of
cryptocurrency pump and dump schemes. SSRN
Electron J. https://doi.org/10.2139/ssrn.3303365
Li T., Shin D., Wang B. (2018) Cryptocurrency pump-and-
dump schemes. SSRN Electron J. https://doi.org/10.
2139/ssrn.3267041
Robleh A., Barrdear, J., Clews, R., Southgate, J. (2014) The
economics of digital currencies. Bank Engl Q Bull 2014
Q3(1):276–286.
Kou G., Xu Y., Peng Y., Shen F., Chen Y., Chang K., Kou
S. (2021) Bankruptcy prediction for SMEs using
transactional data and two-stage multiobjective feature
selection. Decis Supp Syst 140:113429. https://doi.org/
10.1016/j.dss.2020.113429
Anagnostou I., Sourabh S., Kandhai D. (2018)
Incorporating contagion in portfolio credit risk models
using network theory. Complexity 2018:6076173.
https://doi.org/10.1155/2018/6076173
Li T., Kou G., Peng Y., Yu P. S. (2021) An integrated
cluster detection, optimization, and interpretation
approach for financial data. IEEE Trans Cybern. https://
doi.org/10.1109/TCYB.2021.3109066
Dhanalakshmi, S., & Subramanian, C. (2014). An analysis
of data mining applications for fraud detection in
securities market. International Journal of Data Mining
Techniques and Applications, 3(1), 9–1.
doi:10.20894/IJDMTA.102.003.001.003
Öğüt, H., Doganay, M., & Aktas, R. (2009). Detecting
stock-price manipulation in an emerging market: The
case of Turkey. Expert Systems with Applications,
36(9), 11944–11949. doi:10.1016/j.eswa.2009.03.065
Tamersoy, A. (2016). Graph-based algorithms and models
for security, healthcare, and finance [Unpublished
Doctoral dissertation]. Georgia Institute of Technology.
Rayes, J., & Mani, P. (2019). Exploring Insider Trading
Within Hypernetworks. In P. Haber, T.
Lampoltshammer, & M. Mayr (Eds.), Data Science –
Analytics and Applications. Springer. doi:10.1007/978-
3-658-27495-5_1
Zhao, S., Grasmuck, S., & Martin, J. (2008). Identity
construction on Facebook: Digital empowerment in
anchored relationships. Computers in human behavior,
24(5), 1816-1836.
Zhao, Y., Nasrullah, Z., & Li, Z. (2019). Pyod: A python
toolbox for scalable outlier detection. arXiv preprint
arXiv:1901.01588.
Liu, Y., Li, Z., Pan, S., Gong, C., Zhou, C., & Karypis, G.
(2021). Anomaly detection on attributed networks via
contrastive self-supervised learning. IEEE transactions
on neural networks and learning systems, 33(6), 2378-
2392.
Dehghan, A., Siuta, K., Skorupka, A., Dubey, A., Betlen,
A., Miller, D., Xu, W., Kaminski, B., and Pralat, P.
Detecting Bots in Social-Networks Using Node and
Structural Embeddings, Unpublished, 2022.
Zhang, F., Fan, H., Wang, R., Li, Z., & Liang, T. (2022).
Deep Dual Support Vector Data description for
anomaly detection on attributed networks.
International Journal of Intelligent Systems, 37(2),
1509-1528.
Wang, G., Xie, S., Liu, B., and Philip, S. Y.. Review graph
based online store review spammer detection. In IEEE
International Conference on Data Mining series, 2011.
Luther W. J. (2013) Crypto-currencies, network effects, and
switching costs. SSRN Electron J. https://doi.org/10.
2139/ssrn.2295134
Cocco L., Concas G., Marchesi M. (2017) Using an
artificial financial market for studying a cryptocurrency
market. J Econ Interact Coord 12(2):345–365. https://
doi.org/10.1007/s11403-015-0168-2. arXiv:1406.6496
Pyromallis C., Szabo C. (2019) Modelling and analysis of
adaptability and emergent behavior in a cryptocurrency
market. In: 2019 IEEE Symposium series on
computational intelligence, SSCI 2019, pp 284–292.
https://doi.org/10.1109/SSCI44817.2019.9002829
Shibano K, Lin R, Mogi G (2020) Volatility reducing effect
by introducing a price stabilization agent on
cryptocurrencies trading. In: ACM International
conference proceeding series, pp 85–89. https://doi.org/
10.1145/3390566.3391679
Bartolucci S, Caccioli F, Vivo P (2020) A percolation
model for the emergence of the Bitcoin Lightning
Network. Sci Rep 10(1):1–14. https://doi.org/10.1038/
s41598-020-61137-5
Kumar, S., Spezzano, F., Subrahmanian, V. S., &
Faloutsos, C. (2016, December). Edge weight
prediction in weighted signed networks. In 2016 IEEE
16th International Conference on Data Mining
(ICDM) (pp. 221-230). IEEE.
Kumar, S., Hooi, B., Makhija, D., Kumar, M., Faloutsos,
C., & Subrahmanian, V. S. (2018, February). Rev2:
Fraudulent user prediction in rating platforms.
In Proceedings of the Eleventh ACM International
Conference on Web Search and Data Mining (pp. 333-
341).