Betanzos, A., and Principe, J. (2011). Statistical de-
pendence measure for feature selection in microar-
ray datasets. In 19th Europ. Symp. on Art. Neural
Networks-ESANN 011, pages 23–28, Belgium.
Consiglio, A., Casalino, G., Castellano, G., Grillo, G., Per-
lino, E., Vessio, G., and Licciulli, F. (2021). Explain-
ing ovarian cancer gene expression profiles with fuzzy
rules and genetic algorithms. Electronics, 10(375).
Cover, T. and Thomas, J. (2006). Elements of information
theory. John Wiley & Sons, second edition.
D
´
ıaz-Uriarte, R. and de Andr
´
es, S. A. (2006). Gene selec-
tion and classification of microarray data using ran-
dom forest. BMC Bioinformatics, 7:3.
Dhal, P. and Azad, C. (2022). A comprehensive survey on
feature selection in the various fields of machine learn-
ing. Applied Intelligence, 52(4):4543–45810.
Duda, R., Hart, P., and Stork, D. (2001). Pattern classifica-
tion. John Wiley & Sons, second edition.
Escolano, F., Suau, P., and Bonev, B. (2009). Information
Theory in Computer Vision and Pattern Recognition.
Springer.
Fang, O., Mustapha, N., and Sulaiman, N. (2011). Inte-
grative gene selection for classification of microarray
data. Computer and Information Science, 4(2):55–63.
Ferreira, A. and Figueiredo, M. (2023). Leveraging explain-
ability with k-fold feature selection. In 12th Inter-
national Conference on Pattern Recognition Applica-
tions and Methods (ICPRAM), pages 458–465.
Fisher, R. (1936). The use of multiple measurements in
taxonomic problems. Annals of Eugenics, 7:179–188.
Furey, T., Cristianini, N., Duffy, N., Bednarski, D., Schum-
mer, M., and Haussler, D. (2000). Support vector
machine classification and validation of cancer tissue
samples using microarray expression data. Bioinfor-
matics, 16(10).
Guyon, I., Gunn, S., Nikravesh, M., and Zadeh, L.
(2006). Feature extraction, foundations and applica-
tions. Springer.
Guyon, I., Weston, J., and Barnhill, S. (2002). Gene se-
lection for cancer classification using support vector
machines. Machine Learning, 46:389–422.
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The El-
ements of Statistical Learning. Springer, 2nd edition.
Lazar, C., Taminau, J., Meganck, S., Steenhoff, D., Coletta,
A., Molter, C., de Schaetzen, V., Duque, R., Bersini,
H., and Now
´
e, A. (2012). A survey on filter techniques
for feature selection in gene expression microarray
analysis. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 9:1106–1119.
Lee, Z. (2008). An integrated algorithm for gene selec-
tion and classification applied to microarray data of
ovarian cancer. Artificial Intelligence in Medicine,
42(1):81 – 93.
Li, Z., Xie, W., and Liu, T. (2018). Efficient feature selec-
tion and classification for microarray data. PLoS One,
13(8).
Manikandan, G. and Abirami, S. (2018). A Survey on Fea-
ture Selection and Extraction Techniques for High-
Dimensional Microarray Datasets, pages 311–333.
Springer Singapore, Singapore.
Meyer, P., Schretter, C., and Bontempi, G. (2008).
Information-theoretic feature selection in microarray
data using variable complementarity. IEEE Journal of
Selected Topics in Signal Processing, 2(3):261–274.
Peng, H., Long, F., and Ding, C. (2005). Feature selec-
tion based on mutual information: criteria of max-
dependency, max-relevance, and min-redundancy.
IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 27(8):1226–1238.
Pudjihartono, N., Fadason, T., Kempa-Liehr, A., and
O’Sullivan, J. (2022). A review of feature selection
methods for machine learning-based disease risk pre-
diction. Frontiers in Bioinformatics, 2:927312.
Remeseiro, B. and Bolon-Canedo, V. (2019). A review
of feature selection methods in medical applications.
Computers in Biology and Medicine, 112:103375.
S
´
anchez-Maro
˜
no, N., Fontenla-Romero, O., and P
´
erez-
S
´
anchez, B. (2019). Classification of Microarray
Data, pages 185–205. Springer New York, New York,
NY.
Simon, R., Korn, E., McShane, L., Radmacher, M., Wright,
G., and Zhao, Y. (2003). Design and analysis of DNA
microarray investigations. Springer.
Statnikov, A., Aliferis, C., Tsamardinos, I., Hardin, D.,
and Levy, S. (2005). A comprehensive evaluation
of multicategory classification methods for microar-
ray gene expression cancer diagnosis. Bioinformatics,
21(5):631–643.
Yu, L. and Liu, H. (2003). Feature selection for high-
dimensional data: a fast correlation-based filter solu-
tion. In Proceedings of the International Conference
on Machine Learning (ICML), pages 856–863.
Yu, L. and Liu, H. (2004). Efficient feature selection via
analysis of relevance and redundancy. Journal of Ma-
chine Learning Research (JMLR), 5:1205–1224.
Yu, L., Liu, H., and Guyon, I. (2004). Efficient feature
selection via analysis of relevance and redundancy.
Journal of Machine Learning Research, 5:1205–1224.
Zhao, Z., Morstatter, F., Sharma, S., Alelyani, S., Anand,
A., and Liu, H. (2010). Advancing feature selection
research - ASU feature selection repository. Techni-
cal report, Computer Science & Engineering, Arizona
State University.
Zhu, Z., Ong, Y., and Dash, M. (2007). Markov blanket-
embedded genetic algorithm for gene selection. Pat-
tern Recognition, 49(11):3236–3248.
Union k-Fold Feature Selection on Microarray Data
547