Dhaoui, C., Webster, C.M., & Tan, L.P. (2017). Social
media sentiment analysis: lexicon versus machine
learning. J. of Consumer Marketing.
Ducange, P., Fazzolari, M., Petrocchi, M. & Vecchio, M.
(2019). An effective Decision Support System for
social media listening based on cross-source sentiment
analysis models. Engineering Applications of Artificial
Intelligence, 78, 71-85.
Eom, S. & Kim, E. (2006). A survey of decision support
system applications (1995–2001). J. of the Operational
Research Society, 57(11), 1264-1278.
Fazzolari, M., Cozza, V., Petrocchi, M. & Spognardi, A.
(2017). A study on text-score disagreement in online
reviews. Cognitive Computation, 9(5), 689-701.
Forman, G. (2003). An extensive empirical study of feature
selection metrics for text classification. J. Mach. Learn.
Res., 3(Mar), 1289-1305.
Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M. &
Bouchachia, A. (2014). A survey on concept drift
adaptation. ACM comp. surveys (CSUR), 46(4), 1-37.
Gonçalves, P., Araújo, M., Benevenuto, F. & Cha, M.
(2013). Comparing and combining sentiment analysis
methods. In Proc. of the first ACM conf. on Online
social networks, 27-38.
Grander, G., Ferreira da Silva, L. & Santibañez Gonzalez,
E.D.R. (2021). Big data as a value generator in decision
support systems: a literature review. Revista de Gestão
28(3), 205-222.
Guo, X., Yin, Y., Dong, C., Yang, G. & Zhou, G. (2008).
On the class imbalance problem. In Fourth int. conf. on
natural computation, 4, 192-201. IEEE.
Heavin, C. & Power, D.J. (2018). Challenges for digital
transformation–towards a conceptual decision support
guide for managers. J. of Dec. Syst., 27(sup1), 38-45.
Hess, T., Matt, C., Benlian, A. & Wiesböck, F. (2016).
Options for formulating a digital transformation
strategy. MIS Quarterly Executive, 15(2).
Hofer-Shall, Z. (2010), The Forrester Wave: Listening
Platforms, Q3, Forrester Research.
Hutto, C. & Gilbert, E. (2014). Vader: A parsimonious rule-
based model for sentiment analysis of social media text.
In Proc. of the int. AAAI conf. on web and social media
8(1), 216-225.
Karabay, M.E. (2014). Corporate reputation: a definitional
landscape. In Corporate Governance, 229-240.
Springer, Berlin, Heidelberg.
Khan, A., Baharudin, B., Lee, L.H., & Khan, K. (2010). A
review of machine learning algorithms for text-
documents classification. J. of advances in information
technology, 1(1), 4-20.
Li, T., Berens, G. & de Maertelaere, M. (2013). Corporate
Twitter channels: The impact of engagement and
informedness on corporate reputation. Int. J. of
Electronic Commerce, 18(2), 97-126.
Liu, B. (2012). Sentiment analysis and opinion mining.
Synthesis lectures on human language technologies,
5(1), 1-167.
Liu, S., Duffy, A. H., Whitfield, R.I., & Boyle, I.M. (2010).
Integration of decision support systems to improve
decision support performance. Knowledge and
Information Systems, 22(3), 261-286.
Mayfield, A. (2008). What is social media? iCrossing.
Nabi, J. (2018). https://towardsdatascience.com/machine-
learning-multiclass-classification-with-imbalanced-
data-set-29f6a177c1a
Nguyen, N. & Leblanc, G. (2001). Corporate image and
corporate reputation in customers’ retention decisions
in services. J. of retail. & Cons. Serv., 8(4), 227-236.
Passos, D. & Mishra, P. (2022). A tutorial on automatic
hyperparameter tuning of deep spectral modelling for
regression and classification tasks. Chemometrics and
Intelligent Laboratory Systems, 104520.
Porter, M.E. (1985). Technology and competitive
advantage. J. of business strategy, 5(3), 60-78.
Raeder, T., Forman, G. & Chawla, N.V. (2012). Learning
from imbalanced data: Evaluation matters. In Data
mining: Foundations and intelligent paradigms, 315-
331. Springer, Berlin, Heidelberg.
Sauter, V.L. (2014). Decision support systems for business
intelligence. John Wiley & Sons.
Schouten, K. & Frasincar, F. (2015). Survey on aspect-level
sentiment analysis. IEEE Trans. on Knowledge and
Data Engineering, 28(3), 813-830.
Schweidel, D.A., & Moe, W.W. (2014). Listening in on
social media: A joint model of sentiment and venue
format choice. J. of marketing res., 51(4), 387-402.
Singh, N. & Jaiswal, U.C. (2022) Cross Domain Sentiment
Analysis Techniques and Challenges: A Survey. 4th Int.
Conf. on Communication & Information Processing
(ICCIP).
Stewart, M.C., Atilano, M. & Arnold, C.L. (2017).
Improving Customer Relations with Social Listening:
A Case Study of an American Academic Library. Int. J.
of Customer Relationship Marketing and Management
(IJCRMM) 8(1).
Stoyanov, V., Cardie, C., Litman, D., & Wiebe, J. (2006).
Evaluating an opinion annotation scheme using a new
multi-perspective question and answer corpus. In
Computing attitude and affect in text: Theory and
applications, 77-91. Springer, Dordrecht.
Stribling, W. (2008),
http://www.bazaarvoice.com/blog/2008/06/20/land-of-
nodturns-negatives-into-positives-for-customers/
Valdivia, A., Luzón, M.V. & Herrera, F. (2017). Sentiment
analysis in tripadvisor. IEEE Intelligent Systems,
32(4),
72-77.
Westermann, A. & Forthmann, J. (2021), Social listening:
a potential game changer in reputation management
How big data analysis can contribute to understanding
stakeholders' views on organisations, Corporate
Communications: An Int. J., 26(1), 2-22.
Zhang, H., Gan, W. & Jiang, B. (2014), Machine Learning
and Lexicon Based Methods for Sentiment
Classification: A Survey, 11th Web Information System
and Application Conf., Tianjin, China, 262-265, doi:
10.1109/WISA.2014.55.