Future research can expand on the presented
methodology by exploring further optimization
techniques for stateful protocol fuzzing, refining
network fuzzing capabilities to work with a wider
range of systems, and enhancing ICS monitoring for
better detection of vulnerabilities and anomalies.
REFERENCES
Zhu, X., Wen, S., Camtepe, S., & Xiang, Y. (2022).
Fuzzing: A Survey for Roadmap. ACM Computing
Surveys, 54(11s), Article 230. https://doi.org/10.
1145/3512345
Boehme, M., Cadar, C., & Roychoudhury, A. (2021).
Fuzzing: Challenges and Reflections. In IEEE
Software, 38(3), pp. 79-86. doi: 10.1109/
MS.2020.3016773
Serpanos, D., & Katsigiannis, K. (2021). Fuzzing:
Cyberphysical System Testing for Security and
Dependability. In Computer, 54(9), pp. 86-89. doi:
10.1109/MC.2021.3092479
V. -T. Pham, M. Böhme and A. Roychoudhury, "AFLNET:
A Greybox Fuzzer for Network Protocols," 2020 IEEE
13th International Conference on Software Testing,
Validation and Verification (ICST), 2020, pp. 460-465,
doi: 10.1109/ICST46399.2020.00062.
Roberto Natella. 2022. StateAFL: Greybox fuzzing for
stateful network servers. Empirical Softw. Engg. 27, 7
(Dec 2022). https://doi.org/10.1007/s10664-022-
10233-3
Luo, Z., Zuo, F., Jiang, Y., Gao, J., Jiao, X., & Sun, J.
(2019). Polar: Function Code Aware Fuzz Testing of
ICS Protocol. ACM Trans. Embed. Comput. Syst.,
18(5s), Article 93, 22 pages. https://doi.org/10.
1145/3358227
Chen, Y., Poskitt, C. M., Sun, J., Adepu, S., & Zhang, F.
(2019). Learning-guided network fuzzing for testing
cyber-physical system defences. In Proceedings of the
34th IEEE/ACM International Conference on
Automated Software Engineering (ASE '19). IEEE
Press, 962–973. DOI: https://doi.org/10.
1109/ASE.2019.00093
Wilkerson, C., & Hariri, M. E. (2022). IEC 61850-Based
Renewable Energy Systems: A Survey on
Cybersecurity Aspects. In 2022 IEEE International
Conference on Environment and Electrical Engineering
and 2022 IEEE Industrial and Commercial Power
Systems Europe (EEEIC / I&CPS Europe). Prague,
Czech Republic, 2022, pp. 1-6, doi:
10.1109/EEEIC/ICPSEurope54979.2022.9854539
Matsuzaki, K., Sawabe, N., Maeda, R., Suzuki, D.,
Matsuura, T., & Hamada, H. (2020). Cybersecurity
Evaluation Methodology for Distributed Energy
Resources: Industrial Demonstration. In IECON 2020
The 46th Annual Conference of the IEEE Industrial
Electronics Society. Singapore, 2020, pp. 2169-2174,
doi: 10.1109/IECON43393.2020.9254422
Tychalas, D., Benkraouda, H., & Maniatakos, M. (2021).
ICSFuzz: Manipulating I/Os and Repurposing Binary
Code to Enable Instrumented Fuzzing in ICS Control
Applications. In 30th USENIX Security Symposium
(USENIX Security 21), pp. 2847-2862.
Feng, X., Sun, R., Zhu, X., Xue, M., Wen, S., Liu, D., Nepal,
S., & Xiang, Y. (2021). Snipuzz: Black-box Fuzzing of
IoT Firmware via Message Snippet Inference. In
Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security (CCS '21), pp.
337-350. https://doi.org/10.1145/3460120.3484543
Fang, D., Song, Z., Guan, L., Liu, P., Peng, A., Cheng, K.,
Zheng, Y., Liu, P., Zhu, H., & Sun, L. (2021).
ICS3Fuzzer: A Framework for Discovering Protocol
Implementation Bugs in ICS Supervisory Software by
Fuzzing. In Annual Computer Security Applications
Conference (ACSAC '21), pp. 849-860.
https://doi.org/10.1145/3485832.3488028
Chen, Y., Lan, T., & Venkataramani, G. (2019). Exploring
Effective Fuzzing Strategies to Analyze
Communication Protocols. In Proceedings of the 3rd
ACM Workshop on Forming an Ecosystem Around
Software Transformation (FEAST'19), pp. 17-23.
https://doi.org/10.1145/3338502.3359762
Caroline Lemieux and Koushik Sen. (2018). FairFuzz: a
targeted mutation strategy for increasing greybox fuzz
testing coverage. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated
Software Engineering (ASE '18). Association for
Computing Machinery, New York, NY, USA, 475–485.
https://doi.org/10.1145/3238147.3238176.