Khoo, A., Liu, L. Y., Nyalwidhe, J. O., Semmes, O. J.,
Vesprini, D., Downes, M. R., Boutros, P. C., Liu, S. K.,
& Kislinger, T. (2021). Proteomic discovery of non-
invasive biomarkers of localized prostate cancer using
mass spectrometry. Nature Reviews Urology, 18 (12),
707–724.
Kitano, H. (2001). Foundations of systems biology. The
MIT Press Cambridge, Massachusetts London,
England.
Klipp, E., Herwig, R., Kowald, A., Wierling, C., &
Lehrach, H. (2005). Systems biology in practice:
Concepts, implementation and application. John Wiley
& Sons.
Klipp, E., Liebermeister, W., Wierling, C., & Kowald, A.
(2016). Systems biology: A textbook. John Wiley &
Sons.
Kohl, P., Crampin, E. J., Quinn, T., & Noble, D. (2010).
Systems biology: An approach. Clinical Pharmacology
& Therapeutics, 88 (1), 25–33.
Kondratova, M., Czerwinska, U., Sompairac, N.,
Amigorena, S. D., Soumelis, V., Barillot, E., Zinovyev,
A., & Kuperstein, I. (2019). A multiscale signalling
network map of innate immune response in cancer
reveals cell heterogeneity signatures. Nature
Communications, 10 (1), 1–13.
Kondylakis, H., Bucur, A., Dong, F., Renzi, C., Manfrinati,
A., Graf, N., Hoffman, S., Koumakis, L., Pravettoni, G.,
Marias, K., et al. (2017). Imanagecancer: Developing a
platform for empowering patients and strengthening
self-management in cancer diseases. 2017 IEEE 30th
International Symposium on Computer-Based Medical
Systems (CBMS), 755–760.
Kondylakis, H., Koumakis, L., Tsiknakis, M., & Marias, K.
(2018). Implementing a data management
infrastructure for big healthcare data. 2018 IEEE
EMBS International Conference on Biomedical &
Health Informatics (BHI), 361–364.
Kondylakis, H., Spanakis, E. G., Sfakianakis, S., Sakkalis,
V., Tsiknakis, M., Marias, K., Zhao, X., Yu, H. Q., &
Dong, F. (2015). Digital patient: Personalized and
translational data management through the
MyHealthAvatar EU project. 2015 37th Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), 1397–1400.
Kouroubali, A., Koumakis, L., Kondylakis, H., &
Katehakis, D. G. (2019). An integrated approach
towards developing quality mobile health apps for
cancer. In Mobile health applications for quality
healthcare delivery (pp. 46–71). IGI Global.
Kovatchev, B. (2019). A century of diabetes technology:
Signals, models, and artificial pancreas control. Trends
in Endocrinology & Metabolism, 30 (7), 432–444.
Kuijper, H. (2022). Reductionism or holism? In
Comprehending the complexity of countries (pp. 247–
273). Springer.
Laubenbacher, R., Sluka, J. P., & Glazier, J. A. (2021).
Using digital twins in viral infection.Science, 371
(6534), 1105–1106.
Li, C., Donizelli, M., Rodriguez, N., Dharuri, H., Endler,
L., Chelliah, V., Li, L., He, E., Henry, A., Stefan, M. I.,
et al. (2010). Biomodels database: An enhanced,
curated and annotated resource for published
quantitative kinetic models. BMC Systems Biology, 4
(1), 1–14.
Likić, V. A., McConville, M. J., Lithgow, T., & Bacic, A.
(2010). Systems biology: The next frontier for
bioinformatics. Advances in Bioinformatics, 2010.
Lim, J., & Zein, R. (2006). The digital imaging and
communications in medicine (dicom): Description,
structure and applications. In Rapid prototyping (pp.
63–86). Springer.
Linka, K., Peirlinck, M., & Kuhl, E. (2020). The
reproduction number of covid-19 and its correlation
with public health interventions. Computational
Mechanics, 66 (4), 1035–1050.
Lloyd, C. M., Halstead, M. D., & Nielsen, P. F. (2004).
Cellml: Its future, present and past. Progress in
Biophysics and Molecular Biology, 85 (2-3), 433–450.
Lubbock, A. L., & Lopez, C. F. (2021). Programmatic
modeling for biological systems. Current Opinion in
Systems Biology, 27, 100343.
Maass, W., Parsons, J., Purao, S., Storey, V. C., & Woo, C.
(2018). Data-driven meets theory-driven research in the
era of big data: Opportunities and challenges for
information systems research. Journal of the
Association for Information Systems, 19 (12), 1.
Malik-Sheriff, R. S., Glont, M., Nguyen, T. V., Tiwari, K.,
Roberts, M. G., Xavier, A., Vu, M. T., Men, J., Maire,
M., Kananathan, S., et al. (2020). Biomodels—15 years
of sharing computational models in life science.
Nucleic Acids Research, 48 (D1), D407–D415.
Martinez-Velazquez, R., Gamez, R., & El Saddik, A.
(2019). Cardio twin: A digital twin of the human heart
running on the edge. 2019 IEEE International
Symposium on Medical Measurements and
Applications (MeMeA), 1–6.
Masison, J., Beezley, J., Mei, Y., Ribeiro, H. A. L., Knapp,
A. C., Sordo Vieira, L., Adhikari, B., Scindia, Y.,
Grauer, M., Helba, B., et al. (2021). A modular
computational framework for medical digital twins.
Proceedings of the National Academy of Sciences, 118
(20), e2024287118.
Masison, Joseph and Beezley, Jonathan and Mei, Yu and
Ribeiro, Henrique Assis Lopes and Knapp, Adam C and
Sordo Vieira, L and Adhikari, Bandita and Scindia,
Yogesh and Grauer, Michael and Helba, Brian and
others. (2021). A modular computational framework
for medical digital twins [https://github.com/
NutritionalLungImmunity/nlisim].
Mazein, A., Ostaszewski, M., Kuperstein, I., Watterson, S.,
Le Nov`ere, N., Lefaudeux, D., De Meulder, B., Pellet,
J., Balaur, I., Saqi, M., et al. (2018). Systems medicine
disease maps: Community-driven comprehensive
representation of disease mechanisms. NPJ Systems
Biology and Applications, 4 (1), 1–10.
Mazzocchi, F. (2008). Complexity in biology: Exceeding
the limits of reductionism and determinism using
complexity theory. EMBO Reports, 9 (1), 10–14.
Meier-Schellersheim, M., Fraser, I. D., & Klauschen, F.
(2009). Multiscale modeling for biologists. Wiley