Chang, Y.-C., & Hsing, Y.-C. (2021). Emotion-infused
deep neural network for emotionally resonant
conversation. Applied Soft Computing, 113, 107861.
Dale, R. (2021). GPT-3: What’s it good for? Natural
Language Engineering, 27(1), 113--118.
Ethayarajh, K. (n.d.). How contextual are contextualized
word representations? Comparing the geometry of
BERT, ELMo, and GPT-2 embeddings. ArXiv Preprint
ArXiv:1909.00512.
Guo, J. (2022). Deep learning approach to text analysis for
human emotion detection from big data. Journal of
Intelligent Systems, 31(1), 113–126.
https://doi.org/10.1515/jisys-2022-0001
Hajek, P., Barushka, A., & Munk, M. (2020). Fake
consumer review detection using deep neural networks
integrating word embeddings and emotion mining.
Neural Computing and Applications, 32, 17259--
17274.
Humintell. (2020). Ekman 7 Emotion Facial Recognition.
https://www.humintell.com/
IMDb. (2020). Top 100 Greatest Movies of All Time (The
Ultimate List). http://www.imdb.com/list/ls055592025/
Kanjo, E., Al-Husain, L., & Chamberlain, A. (2015).
Emotions in context: Examining pervasive affective
sensing systems, applications, and analyses. Personal
and Ubiquitous Computing, 19, 1197--1212.
Keller, J. M., Lyu, M. R., & Bourgeois, J. A. (1985). A
fuzzy k-nearest neighbor algorithm. IEEE Transactions
on Systems, Man, and Cybernetics, 4, 580--585.
Kompan, M., Matz, S. C., Gosling, S. D., Popov, V., &
Stillwell, D. (2015). Facebook as a research tool for the
social sciences: Opportunities, challenges, ethical
considerations, and practical guidelines. American
Psychologist, 70(6), 543.
Kratzwald, B., Ilić, S., Kraus, M., Feuerriegel, S., &
Prendinger, H. (2018). Deep learning for affective
computing: Text-based emotion recognition in decision
support. Decision Support Systems, 115, 24–35.
Kusal, S., Patil, S., Choudrie, J., Kotecha, K., Mishra, S., &
Abraham, A. (2022). AI-based Conversational Agents:
A Scoping Review from Technologies to Future
Directions. IEEE Access.
Lauriola, I., Lavelli, A., & Aiolli, F. (2022). An
introduction to deep learning in natural language
processing: Models, techniques, and tools.
Neurocomputing, 470, 443--456.
Leung, J. K., Griva, I., & Kennedy, W. G. (2020a). An
Affective Aware Pseudo Association Method to
Connect Disjoint Users Across Multiple Datasets – an
enhanced validation method for Text-based Emotion
Aware Recommender. International Journal on
Natural Language Computing (IJNLC) Vol, 9(4).
https://doi.org/10.5121/ijnlc.2020.9402
Leung, J. K., Griva, I., & Kennedy, W. G. (2020b). Making
Use of Affective Features from Media Content
Metadata for Better Movie Recommendation Making.
ArXiv Preprint ArXiv:2007.00636.
Leung, J. K., Griva, I., & Kennedy, W. G. (2020c). Text-
based Emotion Aware Recommender. Proceedings of
International Conference on Natural Language
Computing and AI (NLCAI 2020), 10, 101–114.
https://doi.org/10.5121/csit.2020.101009
Leung, J. K., Griva, I., & Kennedy, W. G. (2021). Applying
the Affective Aware Pseudo Association Method to
Enhance the Top-N Recommendations Distribution to
Users in Group Emotion Recommender Systems.
International Journal on Natural Language Computing
(IJNLC), 10, 1–20.
https://doi.org/10.5121/ijnlc.2021.10101
Lo, S. L., Cambria, E., Chiong, R., & Cornforth, D. (2017).
Multilingual sentiment analysis: From formal to
informal and scarce resource languages. Artificial
Intelligence Review, 48, 499--527.
Mauss, I. B., & Robinson, M. D. (2009a). Measures of
emotion: A review. Cognition & Emotion, 23(2), 209–
237. https://doi.org/10.1080/02699930802204677
Mauss, I. B., & Robinson, M. D. (2009b). Measures of
emotion: A review. Cognition and Emotion, 23(2), 209-
-237.
Mohammad, S. M. (2016). Sentiment analysis: Detecting
valence, emotions, and other affectual states from text.
In Emotion measurement (pp. 201–237). Elsevier.
Munn, L., Magee, L., & Arora, V. (2023). Truth Machines:
Synthesizing Veracity in AI Language Models. ArXiv
Preprint ArXiv:2301.12066.
Naseem, U., Razzak, I., Musial, K., & Imran, M. (2020).
Transformer based deep intelligent contextual
embedding for twitter sentiment analysis. Future
Generation Computer Systems, 113, 58--69.
Nasir, A. F. A., Nee, E. S., Choong, C. S., Ghani, A. S. A.,
Majeed, A. P. A., Adam, A., & Furqan, M. (2020). Text-
based emotion prediction system using machine
learning approach (Vol. 769). IOP Publishing.
OpenAI. (2023). ChatGPT (Mar 14 version). Large
Language Model. https://chat.openai.com/chat
Qian, Y., Zhang, Y., Ma, X., Yu, H., & Peng, L. (2019).
EARS: Emotion-aware recommender system based on
hybrid information fusion. Information Fusion, 46,
141–146.
Russell, J. A. (2003). Core affect and the psychological
construction of emotion. Psychological Review, 110(1),
145.
Schedl, M., Zamani, H., Chen, C.-W., Deldjoo, Y., & Elahi,
M. (2018). Current challenges and visions in music
recommender systems research. International Journal
of Multimedia Information Retrieval, 7, 95--116.
Tsytsarau, M., & Palpanas, T. (2012). Survey on mining
subjective data on the web. Data Mining and
Knowledge Discovery, 24, 478--514.
Yang, K., Wang, C., Sarsenbayeva, Z., Tag, B., Dingler, T.,
Wadley, G., & Goncalves, J. (2021). Benchmarking
commercial emotion detection systems using realistic
distortions of facial image datasets. The Visual
Computer, 37, 1447--1466.