mining projects, e.g. via customized mutation and
crossover methods. Since the presented methods for
the inclusion of expert knowledge have specifically
been designed for use in practice, an application in
industrial use case scenarios would be desirable.
ACKNOWLEDGEMENTS
This study was funded by the German Ministry
of Education and Research under grant number
16KIS1000.
REFERENCES
Anderer, S., Kempter, T., Scheuermann, B., and
Mostaghim, S. (2021a). The dynamic role mining
problem: Role mining in dynamically changing busi-
ness environments. In B
¨
ack, T., Wagner, C., Garibaldi,
J. M., Lam, H. K., Cottrell, M., Merelo, J. J., and War-
wick, K., editors, Proceedings of IJCCI 2021, On-
line Streaming, October 25-27, 2021, pages 37–48.
SCITEPRESS.
Anderer, S., Kreppein, D., Scheuermann, B., and
Mostaghim, S. (2020). The addRole-EA: A new evo-
lutionary algorithm for the role mining problem. In
Guerv
´
os, J. J. M., Garibaldi, J. M., Wagner, C., B
¨
ack,
T., Madani, K., and Warwick, K., editors, Proceed-
ings of IJCCI 2020, Budapest, Hungary, November 2-
4, 2020, pages 155–166. SCITEPRESS.
Anderer, S., Scheuermann, B., Mostaghim, S., Bauerle, P.,
and Beil, M. (2021b). RMPlib: A library of bench-
marks for the role mining problem. In Lobo, J., Pietro,
R. D., Chowdhury, O., and Hu, H., editors, Proceed-
ings of SACMAT 2021, Virtual Event, Spain, June 16-
18, 2021, pages 3–13. ACM.
Blundo, C. and Cimato, S. (2010). A simple role mining al-
gorithm. In Shin, S. Y., Ossowski, S., Schumacher,
M., Palakal, M. J., and Hung, C.-C., editors, Pro-
ceedings of the 2010 ACM SAC, Sierre, Switzerland,
March 22-26, 2010, pages 1958–1962, New York,
New York. ACM.
Branke, J. (1999). Memory enhanced evolutionary algo-
rithms for changing optimization problems. In Pro-
ceedings of IEEE CEC 1999, Washington, DC, USA
July 6-9, 1999, volume 3, pages 1875–1882. IEEE.
Do Nascimento, H. A. D. (2003). User Hints for Optimi-
sation Processes. PhD thesis, University of Sydney.
Information Technologies.
Du, X. and Chang, X. (2014). Performance of AI algo-
rithms for mining meaningful roles. In Proceedings
of IEEE CEC 2014, Beijing, China, July 6-11, 2014,
pages 2070–2076. IEEE.
Ene, A., Horne, W. G., Milosavljevic, N., Rao, P., Schreiber,
R., and Tarjan, R. E. Fast exact and heuristic methods
for role minimization problems. In Ray, I. and Li,
N., editors, Proceedings of SACMAT 2008, Estes Park,
CO, USA, June 11-13, 2008, pages 1–10, New York,
New York. ACM.
Ferraiolo, D. F. and Kuhn, D. R. (1992). Role-based access
controls. In Proceedings of NCSC 1992, Baltimore,
Maryland, USA, October 13-16, 1992, pages 554 –
563, Baltimore.
Huang, H., Shang, F., Liu, J., and Du, H. (2015). Handling
least privilege problem and role mining in RBAC. In
Journal of Combinatorial Optimization, volume 30,
pages 63–86.
K
¨
onig, R. and Schneider, S. (2011). Nutzerinteraktion bei
der computergest
¨
utzten generierung von layouts. In
Donath, D. and K
¨
onig, R., editors, Arbeitspapiere Nr.
8 Informatik in der Architektur, Weimar. Bauhaus-
Universit
¨
at Weimar.
Mitra, B., Sural, S., Vaidya, J., and Atluri, V. (2016). A
survey of role mining. In ACM Computing Surveys,
volume 48, pages 1–37, New York, New York. ACM.
Molloy, I. M., Li, N., Li, T., Mao, Z., Wang, Q., and Lobo, J.
(2009). Evaluating role mining algorithms. In Carmi-
nati, B. and Joshi, J. B. D., editors, Proceedings of
ACM SACMAT 2009, Stresa, Italy, June 3-5, 2009,
pages 95–104, New York, New York. ACM.
PwC (2022). PwC’s Global Economic Crime and Fraud
Survey 2022. PricewaterhouseCoopers.
Saenko, I. and Kotenko, I. (2011). Genetic algorithms
for role mining problem. In Cotronis, Y., Danelutto,
M., and Papadopoulos, G. A., editors, Proceedings of
PDP 2011, Ayia Napa, Cyprus, 9-11 February 2011,
pages 646–650, New York, New York. IEEE.
Saenko, I. and Kotenko, I. (2012). Design and perfor-
mance evaluation of improved genetic algorithm for
role mining problem. In Stotzka, R., Schiffers, M.,
and Cotronis, Y., editors, Proceedings of PDP 2012,
Munich, Germany, February 15-17, 2012, pages 269–
274, New York, New York. IEEE.
Saenko, I. and Kotenko, I. (2016a). Reconfiguration of
RBAC schemes by genetic algorithms. In Badica, C.
and El Fallah Seghrouchni, A. e. a., editors, Intelligent
Distributed Computing X - Proceedings of IDC 2016,
Paris, France, October 10-12 2016, volume 678 of
Studies in Computational Intelligence, pages 89–98,
Cham. Springer.
Saenko, I. and Kotenko, I. (2016b). Using genetic al-
gorithms for design and reconfiguration of RBAC
schemes. In Proceedings of PrAISeECAI 2016, The
Hague, Netherlands, August 29-30, 2016, pages 1–9,
New York, New York. ACM.
Vaidya, J., Atluri, V., and Guo, Q. (2007). The role min-
ing problem. In Lotz, V. and Thuraisingham, B., edi-
tors, Proceedings of SACMAT 2007, Sophia Antipolis,
France, June 20-22, 2007, pages 175–184, New York,
New York. ACM.
Vaidya, J., Atluri, V., Guo, Q., and Lu, H. (2010a). Role
mining in the presence of noise. In Foresti, S. and
Jajodia, S., editors, Data and Applications Security
and Privacy XXIV - Proceedings of IFIP 2010, Rome,
Italy, June 21-23, 2010., volume 6166 of Lecture
Notes in Computer Science, pages 97–112, Berlin,
Heidelberg. Springer.
Interactive Role Mining Including Expert Knowledge into Evolutionary Algorithms
161