coordination’, Mathematical Models and Methods in
Applied Sciences, 27(06), pp. 1005–1049.
Deisseroth, K. (2010) ‘Controlling the Brain with Light’,
Scientific American. United States, 303(5), pp. 48–55.
Doronina-Amitonova, L. V et al. (2012) ‘Multicolor in vivo
brain imaging with a microscope-coupled fiber-bundle
microprobe’, Applied Physics Letters, 101(23), p.
233702. doi: 10.1063/1.4767386.
Doursat, R. (2013) ‘Bridging the mind-brain gap by
morphogenetic ‘neuron flocking’: The dynamic self-
organization of neural activity into mental shapes’,
AAAI Fall Symposium - Technical Report, FS-13-02,
pp. 16–21.
Escaff, D. and Delpiano, R. (2020) ‘Flocking transition
within the framework of Kuramoto paradigm for
synchronization: Clustering and the role of the range of
interaction’, Chaos: An Interdisciplinary Journal of
Nonlinear Science, 30(8), p. 083137.
Fox, Z. et al. (2022) ‘Enabling reactive microscopy with
MicroMator’, Nature Communications, 13, p. 2199.
Furtado, P. (2021) ‘Testing Segmentation Popular Loss and
Variations in Three Multiclass Medical Imaging
Problems’, Journal of Imaging, 7(2), p. 16.
Goldin, M. A. et al. (2022) ‘Context-dependent selectivity
to natural images in the retina’, Nature
Communications, 13(1), p. 5556.
Hamid, O. H. and Braun, J. (2019) ‘Reinforcement
Learning and Attractor Neural Network Models of
Associative Learning’, in Sabourin, C. et al. (eds)
Computational Intelligence: 9th International Joint
Conference, IJCCI 2017 Funchal-Madeira, Portugal,
November 1-3, 2017 Revised Selected Papers. Cham:
Springer International Publishing, pp. 327–349.
Huisken, J. and Stainier, D. Y. R. (2009) ‘Selective plane
illumination microscopy techniques in developmental
biology’, Development, 136(12), pp. 1963–1975.
Jennings, J. H. et al. (2019) ‘Interacting neural ensembles
in orbitofrontal cortex for social and feeding
behaviour’, Nature, 565(7741), pp. 645–649.
Klapoetke, N. C. et al. (2014) ‘Independent optical
excitation of distinct neural populations’, Nature
Methods, 11(3), pp. 338–346.
Kumar, S. and Khammash, M. (2022) ‘Platforms for
Optogenetic Stimulation and Feedback Control’,
Frontiers in Bioengineering and Biotechnology, 10, p.
918917. doi: 10.3389/fbioe.2022.918917.
Lee, Jonghyeok et al. (2022) ‘A pixel-level coarse-to-fine
image segmentation labelling algorithm’, Scientific
Reports, 12(1), p. 8672.
Levis, D., Pagonabarraga, I. and Liebchen, B. (2019)
‘Activity induced synchronization: Mutual flocking and
chiral self-sorting’, Physical Review Research.
American Physical Society, 1(2), p. 023026.
Maddalena, L. et al. (2023) ‘Optogenetics and Light-Sheet
Microscopy’, in, pp. 231–261.
Marre, O. et al. (2012) ‘Mapping a Complete Neural
Population in the Retina’, The Journal of Neuroscience.
United States, 32(43), pp. 14859–14873. doi:
10.1523/JNEUROSCI.0723-12.2012.
Miyashita, Y. (1988) ‘Neuronal correlate of visual
associative long-term memory in the primate temporal
cortex’, Nature, 335(6193), pp. 817–820.
Papadopoulou, M. et al. (2023) ‘Dynamics of collective
motion across time and species’, Philosophical
Transactions of the Royal Society B: Biological
Sciences, 378(1874). doi: 10.1098/rstb.2022.0068.
Papp, E. A. et al. (2016) ‘Brain-Wide Mapping of Axonal
Connections: Workflow for Automated Detection and
Spatial Analysis of Labeling in Microscopic Sections’,
Frontiers in Neuroinformatics, 10.
Patriarchi, T. et al. (2018) ‘Ultrafast neuronal imaging of
dopamine dynamics with designed genetically encoded
sensors.’, Science (New York, N.Y.). United States,
360(6396). doi: 10.1126/science.aat4422.
Ramirez, S. et al. (2013) ‘Creating a false memory in the
hippocampus.’, Science (New York, N.Y.), 341(6144),
pp. 387–91. doi: 10.1126/science.1239073.
Ressel, V. et al. (2018) ‘Comparison of DTI analysis
methods for clinical research: influence of pre-
processing and tract selection methods’, European
Radiology Experimental, 2(1), p. 33.
Reynolds, C. W. (1987) ‘Flocks, herds and schools: A
distributed behavioral model’, ACM SIGGRAPH
Computer Graphics, 21(4), pp. 25–34.
Ronneberger, O. (2017) ‘Invited Talk: U-Net
Convolutional Networks for Biomedical Image
Segmentation’, in Maier-Hein geb. Fritzsche, K. H. et
al. (eds) Bildverarbeitung für die Medizin 2017.
Springer Berlin Heidelberg, pp. 3–3.
Rouzaire, Y. and Levis, D. (2022) ‘Dynamics of topological
defects in the noisy Kuramoto model in two
dimensions’, Frontiers in Physics, 10, p. 976515.
Silvestri, L. et al. (2019) ‘Whole brain images of selected
neuronal types’. Human Brain Project
Neuroinformatics Platform. doi: 10.25493/68S1-9R1.
Silvestri, L., Di Giovanna, A. P. and Mazzamuto, G. (2020)
‘Whole-brain images of different neuronal markers’.
Human Brain Project Neuroinformatics Platform. doi:
10.25493/A0XN-XC1.
Vicsek, T. and Zafeiris, A. (2012) ‘Collective motion’,
Physics Reports, 517(3–4), pp. 71–140.
Wang, Q. et al. (2020) ‘The Allen Mouse Brain Common
Coordinate Framework: A 3D Reference Atlas’, Cell,
181(4), pp. 936-953.e20.
Yang, Y. et al.
(2021) ‘Wireless multilateral devices for
optogenetic studies of individual and social behaviors’,
Nature Neuroscience, 24(7), pp. 1035–1045. doi:
10.1038/s41593-021-00849-x.
Zhan, L. et al. (2015) ‘Comparison of nine tractography
algorithms for detecting abnormal structural brain
networks in Alzheimer’s disease.’, Frontiers in aging
neuroscience, 7(APR), p. 48.