ICINCO 2020 - Proceedings of the 17th International
Conference on Informatics in Control, Automation and
Robotics, 675–680. https://doi.org/10.5220/0009869
106750680
Lippi, V., & Mergner, T. (2017). Human-derived
disturbance estimation and compensation (DEC)
method lends itself to a modular sensorimotor control
in a humanoid robot. Frontiers in Neurorobotics,
11(SEP). https://doi.org/10.3389/fnbot.2017.00049
Lippi, V., & Mergner, T. (2020). A challenge: Support of
standing balance in assistive robotic devices. Applied
Sciences, 10(15), 5240. https://doi.org/10.3390/
APP10155240
Lippi, V., Mergner, T., Szumowski, M., Zurawska, M. S.,
& Zielińska, T. (2016). Human-inspired Humanoid
Balancing and Posture Control in Frontal Plane. In
ROMANSY 21-Robot Design, Dynamics and Control
(pp. 285–292). Springer, Cham. https://doi.org/10.
1007/978-3-319-33714-2_32
Lippi, V., & Molinari, F. (2020). Lyapunov stability of a
nonlinear bio-inspired system for the control of
humanoid balance. ICINCO 2020 - Proceedings of the
17th International Conference on Informatics in
Control, Automation and Robotics, 726–733.
https://doi.org/10.5220/0009970307260733
Lockhart, D. B., & Ting, L. H. (2007). Optimal
sensorimotor transformations for balance. Nature
Neuroscience, 10(10). https://doi.org/10.1038/nn1986
Loram, I. D., Maganaris, C. N., & Lakie, M. (2004).
Paradoxical muscle movement in human standing.
Journal of Physiology, 556(3). https://doi.org/10.
1113/jphysiol.2004.062398
Loram, I. D., Maganaris, C. N., & Lakie, M. (2005a).
Active, non-spring-like muscle movements in human
postural sway: How might paradoxical changes in
muscle length be produced? Journal of Physiology,
564(1). https://doi.org/10.1113/jphysiol.2004.073437
Loram, I. D., Maganaris, C. N., & Lakie, M. (2005b).
Human postural sway results from frequent ballistic
bias impulses by the soleus and gastrocnemius. Journal
of Physiology, 564(1). https://doi.org/10.1113/
jphysiol.2004.076307
Maurer, C., Mergner, T., & Peterka, R. J. (2006).
Multisensory control of human upright stance.
Experimental Brain Research, 171(2), 231–250.
https://doi.org/10.1007/s00221-005-0256-y
McNeal, J. S., & Hunt, A. (2023). A Simple Dynamic
Controller for Emulating Human Balance Control. In F.
Meder, A. Hunt, L. Margheri, A. Mura, & B. Mazzolai
(Eds.), Biomimetic and Biohybrid Systems (pp. 227–
239). Springer Nature Switzerland.
Mergner, T, Huber, W., & Becker, W. (1997). Vestibular-
neck interaction and transformation of sensory
coordinates. Journal of Vestibular Research :
Equilibrium & Orientation, 7(4), 347–367.
Mergner, Thomas. (2010). A neurological view on reactive
human stance control. Annual Reviews in Control
,
34(2), 177–198. https://doi.org/10.1016/j.arcontrol.
2010.z08.001
Mergner, Thomas, & Rosemeier, T. (1998). Interaction of
vestibular, somatosensory and visual signals for
postural control and motion perception under terrestrial
and microgravity conditions - A conceptual model.
Brain Research Reviews, 28(1–2). https://doi.org/
10.1016/S0165-0173(98)00032-0
Mergner, Thomas, Schweigart, G., & Fennell, L. (2009).
Vestibular humanoid postural control. Journal of
Physiology Paris, 103(3–5), 178–194.
https://doi.org/10.1016/j.jphysparis.2009.08.002
Merton, P. A. (1953). Speculations on the Servo-Control of
Movement. In In Ciba Foundation Symposium - The
Spinal Cord, G.E.W. Wolstenholme (Ed.).
https://doi.org/10.1002/9780470718827.ch18
Molnar, C. A., Zelei, A., & Insperger, T. (2021). Rolling
balance board of adjustable geometry as a tool to assess
balancing skill and to estimate reaction time delay.
Journal of the Royal Society Interface, 18(176).
https://doi.org/10.1098/rsif.2020.0956
Morasso, P., Cherif, A., & Zenzeri, J. (2019). Quiet
standing: The single inverted pendulum model is not so
bad after all. PLoS ONE, 14(3).
https://doi.org/10.1371/journal.pone.0213870
Morasso, P. G., & Schieppati, M. (1999). Can muscle
stiffness alone stabilize upright standing? Journal of
Neurophysiology, 82(3). https://doi.org/10.1152/jn.
1999.82.3.1622
Morice, A. H. P., Siegler, I. A., & Bardy, B. G. (2008).
Action perception patterns in the virtual ball bouncing:
combating system latency and tracking functional
validity. J Neurosci Methods, 1(255), 255–266.
Ott, C., Henze, B., Hettich, G., Seyde, T. N., Roa, M. A.,
Lippi, V., & Mergner, T. (2016). Good Posture, Good
Balance: Comparison of Bioinspired and Model-Based
Approaches for Posture Control of Humanoid Robots.
IEEE Robotics & Automation Magazine, 23(1), 22–33.
https://doi.org/10.1109/MRA.2015.2507098
Pasma, J. H., Assländer, L., van Kordelaar, J., de Kam, D.,
Mergner, T., & Schouten, A. C. (2018). Evidence in
support of the independent channel model describing
the sensorimotor control of human stance using a
humanoid robot. Frontiers in Computational
Neuroscience, 12. https://doi.org/10.3389/fncom.
2018.00013
Peterka, R. J. (2002). Sensorimotor integration in human
postural control. Journal of Neurophysiology.
https://doi.org/10.1152/jn.2002.88.3.1097
Pinter, I. J., Van Swigchem, R., Van Soest, A. J., &
Rozendaal, L. A. (2008). The dynamics of postural
sway cannot be captured using a one-segment inverted
pendulum model: A PCA on segment rotations during
unperturbed stance. Journal of Neurophysiology,
100(6). https://doi.org/10.1152/jn.01312.2007
Qu, X., Nussbaum, M. A., & Madigan, M. L. (2009).
Model-based assessments of the effects of age and
ankle fatigue on the control of upright posture in
humans. Gait and Posture, 30(4).
https://doi.org/10.1016/j.gaitpost.2009.07.127
Souza, T. R., Schallig, W., Veerkamp, K., Magalhães, F.
A., Okai-Nóbrega, L. A., Fonseca, S. T., & van der