ACKNOWLEDGEMENTS
The authors are grateful for the financial support
granted by the Conselho Nacional de Desenvolvi-
mento Cient
´
ıfico e Tecnol
´
ogico (CNPq) and the
Coordenac¸
˜
ao de Aperfeic¸oamento de Pessoal de
N
´
ıvel Superior - Brasil (CAPES) - Finance Code
001. The authors wish to acknowledge the Academy
of Finland support via RoboMesh (Decision num-
ber: 336060) Beyond 5G Distributed Ledger Technol-
ogy driven Mesh for Industrial Robot and Collabora-
tion, FireMan (Decision number: 348008) Unmanned
aerial systems based solutions for real-time manage-
ment of wildfires and Aeropolis (Decision number:
348479) Sustainable and autonomous carbon-neutral
aerial ecosystems and energy solutions for future
metropolises.
REFERENCES
Borowczyk, A., Nguyen, D.-T., Phu-Van Nguyen, A.,
Nguyen, D. Q., Saussi
´
e, D., and Ny, J. L. (2017).
Autonomous landing of a multirotor micro air ve-
hicle on a high velocity ground vehicle**this work
was partially supported by cfi jelf award 32848 and
a hardware donation from dji. IFAC-PapersOnLine,
50(1):10488–10494. 20th IFAC World Congress.
Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Jour-
nal of Software Tools.
EM-DAT (2018). UNISDR and CRED report: Eco-
nomic losses, poverty & disasters (1998–2017).
Retrieved from https://www.unisdr.org/files/61119
credeconomiclosses.pdf.
Feng, K., Li, W., Ge, S., and Pan, F. (2020). Packages de-
livery based on marker detection for uavs. In 2020
Chinese Control And Decision Conference (CCDC),
pages 2094–2099.
Feng, Y., Zhang, C., Baek, S., Rawashdeh, S., and Mo-
hammadi, A. (2018). Autonomous landing of a uav
on a moving platform using model predictive control.
Drones, 2(4).
Gautam, A., Singh, M., Sujit, P. B., and Saripalli, S. (2022).
Autonomous quadcopter landing on a moving target.
Sensors, 22(3).
Giernacki, W., Skwierczy
´
nski, M., Witwicki, W., Wro
´
nski,
P., and Kozierski, P. (2017). Crazyflie 2.0 quadrotor as
a platform for research and education in robotics and
control engineering. In 2017 22nd International Con-
ference on Methods and Models in Automation and
Robotics (MMAR), pages 37–42.
Hang, K., Lyu, X., Song, H., Stork, J. A., Dollar, A. M.,
Kragic, D., and Zhang, F. (2019). Perching and rest-
ing—a paradigm for uav maneuvering with modular-
ized landing gears. Science Robotics, 4(28):eaau6637.
Holm, S. M., Miller, M. D., and Balmes, J. R. (2021).
Health effects of wildfire smoke in children and public
health tools: a narrative review. Journal of Exposure
Science & Environmental Epidemiology, 31(1):1–20.
Junaid, A. B., Konoiko, A., Zweiri, Y., Sahinkaya, M. N.,
and Seneviratne, L. (2017). Autonomous wireless
self-charging for multi-rotor unmanned aerial vehi-
cles. Energies, 10(6).
Kim, J., Kim, S., Ju, C., and Son, H. I. (2019). Unmanned
aerial vehicles in agriculture: A review of perspective
of platform, control, and applications. IEEE Access,
7:105100–105115.
Kirchgeorg, S. and Mintchev, S. (2022). Hedgehog:
Drone perching on tree branches with high-friction
origami spines. IEEE Robotics and Automation Let-
ters, 7(1):602–609.
Kitchen, R., Bierwolf, N., Harbertson, S., Platt, B., Owen,
D., Griessmann, K., and Minor, M. A. (2020). Design
and evaluation of a perching hexacopter drone for en-
ergy harvesting from power lines. In 2020 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 1192–1198.
Kramar, V., R
¨
oning, J., Erkkil
¨
a, J., Hinkula, H., Kolli, T.,
and Rauhala, A. (2022). Unmanned aircraft systems
and the nordic challenges. In Lipping, T., Linna, P.,
and Narra, N., editors, New Developments and Envi-
ronmental Applications of Drones, pages 1–30, Cham.
Springer International Publishing.
Persson, L. and Wahlberg, B. (2019). Model predictive con-
trol for autonomous ship landing in a search and res-
cue scenario. In AIAA Scitech 2019 Forum.
Radoglou-Grammatikis, P., Sarigiannidis, P., Lagkas, T.,
and Moscholios, I. (2020). A compilation of uav ap-
plications for precision agriculture. Computer Net-
works, 172:107148.
Rodriguez-Ramos, A., Sampedro, C., Bavle, H., de la
Puente, P., and Campoy, P. (2019). A deep reinforce-
ment learning strategy for uav autonomous landing on
a moving platform. Journal of Intelligent & Robotic
Systems, 93(1):351–366.
Rosten, E., Porter, R., and Drummond, T. (2010). Faster
and better: A machine learning approach to corner de-
tection. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32(1):105–119.
Tsouros, D. C., Bibi, S., and Sarigiannidis, P. G. (2019). A
review on uav-based applications for precision agri-
culture. Information, 10(11).
Tyukavina, A., Potapov, P., Hansen, M. C., Pickens, A. H.,
Stehman, S. V., Turubanova, S., Parker, D., Zalles, V.,
Lima, A., Kommareddy, I., Song, X.-P., Wang, L., and
Harris, N. (2022). Global trends of forest loss due to
fire from 2001 to 2019. Frontiers in Remote Sensing,
3.
Von Bueren, S. K., Burkart, A., Hueni, A., Rascher, U.,
Tuohy, M. P., and Yule, I. J. (2015). Deploying four
optical uav-based sensors over grassland: challenges
and limitations. Biogeosciences, 12(1):163–175.
Xuan-Mung, N., Hong, S. K., Nguyen, N. P., Ha, L. N.
N. T., and Le, T.-L. (2020). Autonomous quadcopter
precision landing onto a heaving platform: New
method and experiment. IEEE Access, 8:167192–
167202.
Hanging Drone: An Approach to UAV Landing for Monitoring
373