Bottou, L. (1991). Stochastic Gradient Learning in Neural
Networks.
Coumans, E. (n.d.). PyBullet Physics Engine.
Https://Pybullet.Org/Wordpress/.
Goodfellow, I., Bengio, Y., & Courville, A. (n.d.). Deep
Learning.
Gymnasium: A standard API for reinforcement learning.
(n.d.). Https://Gymnasium.Farama.Org/.
Ha, H., Xu, J., & Song, S. (2020). Learning a Decentralized
Multi-arm Motion Planner. http://arxiv.org/abs/2011.
02608
Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement
learning in robotics: A survey. International Journal of
Robotics Research, 32(11), 1238–1274.
https://doi.org/10.1177/0278364913495721
Lapan, M. (2018). Deep Reinforcement Learning Hands-
On.
Li, X., Liu, H., & Dong, M. (2022). A General Framework
of Motion Planning for Redundant Robot Manipulator
Based on Deep Reinforcement Learning. IEEE
Transactions on Industrial Informatics, 18(8), 5253–
5263. https://doi.org/10.1109/TII.2021.3125447
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013).
Playing Atari with Deep Reinforcement Learning.
http://arxiv.org/abs/1312.5602
Peres, R. S., Jia, X., Lee, J., Sun, K., Colombo, A. W., &
Barata, J. (2020). Industrial Artificial Intelligence in
Industry 4.0 -Systematic Review, Challenges and
Outlook. IEEE Access. https://doi.org/10.1109/
ACCESS.2020.3042874
Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., & Dormann, N. (2021). Stable-Baselines3: Reliable
Reinforcement Learning Implementations. In Journal
of Machine Learning Research (Vol. 22).
https://github.com/DLR-RM/stable-baselines3.
Savastano, M., Amendola, C., Bellini, F., & D’Ascenzo, F.
(2019). Contextual impacts on industrial processes
brought by the digital transformation of manufacturing:
A systematic review. Sustainability (Switzerland),
11(3). https://doi.org/10.3390/su11030891
Scheiderer, C., Thun, T., & Meisen, T. (2019). Bézier curve
based continuous and smooth motion planning for self-
learning industrial robots. Procedia Manufacturing, 38,
423–430. https://doi.org/10.1016/j.promfg.2020.01.
054
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., &
Klimov, O. (2017). Proximal Policy Optimization
Algorithms. http://arxiv.org/abs/1707.06347
Shahid, A. A., Roveda, L., Piga, D., & Braghin, F. (n.d.).
Continuous Control Actions Learning and Adaptation
for Robotic Manipulation through Reinforcement
Learning.
Sherwani, F., Asad, M. M., & Ibrahim, B. S. K. K. (2020).
Collaborative Robots and Industrial Revolution 4.0 (IR
4.0). https://www.mirai-lab.co.jp/
Shweta Bhatt. (n.d.). Reinforcement Learning 101: Learn
the essentials of Reinforcement Learning!
Https://Towardsdatascience.Com/Reinforcement-
Learning-101-E24b50e1d292.
Sutton, R. S., & Barto, A. G. (2020). Reinforcement
learning : an introduction (2nd Edition). The MIT Press.
Xie, J., Shao, Z., Li, Y., Guan, Y., & Tan, J. (2019). Deep
Reinforcement Learning with Optimized Reward
Functions for Robotic Trajectory Planning. IEEE
Access, 7, 105669–105679. https://doi.org/10.1109/
ACCESS.2019.2932257
Zhou, D., Jia, R., Yao, H., & Xie, M. (2021). Robotic Arm
Motion Planning Based on Residual Reinforcement
Learning. 2021 13th International Conference on
Computer and Automation Engineering, ICCAE 2021,
89–94. https://doi.org/10.1109/ICCAE51876.2021.
9426160.