REFERENCES
Adu-Gyamfi, G., Song, H., Nketiah, E., Obuobi, B., Adjei,
M., & Cudjoe, D. (2022). Determinants of adoption
intention of battery swap technology for electric
vehicles. Energy, 251, 123862.
Agrawal, A., Gans, J., & Goldfarb, A. (2017). What to
expect from artificial intelligence. In: MIT Sloan
Management Review Cambridge, MA, USA.
Al-Emran, M., Mezhuyev, V., Kamaludin, A., & Shaalan,
K. (2018). The impact of knowledge management
processes on information systems: A systematic review.
International Journal of Information Management, 43,
173-187.
Argote, L., Ingram, P., Levine, J. M., & Moreland, R. L.
(2000). Knowledge transfer in organizations: Learning
from the experience of others. Organizational behavior
and human decision processes, 82(1), 1-8.
Bacon, E., Williams, M. D., & Davies, G. (2020).
Coopetition in innovation ecosystems: A comparative
analysis of knowledge transfer configurations. Journal
of Business Research, 115, 307-316.
Beltagui, A., Nunes, B., & Gold, S. (2022). Sustainability
and the digital supply chain. In The Digital Supply
Chain (pp. 397-417). Elsevier.
Bhatti, G., Mohan, H., & Singh, R. R. (2021). Towards the
future of smart electric vehicles: Digital twin
technology. Renewable and Sustainable Energy
Reviews, 141, 110801.
Cai-Ming, Z., & Hao-Nan, C. (2020). Preprocessing
method of structured big data in human resource
archives database. 2020 IEEE International Conference
on Industrial Application of Artificial Intelligence
(IAAI),
Casper, R., & Sundin, E. (2021). Electrification in the
automotive industry: effects in remanufacturing.
Journal of Remanufacturing, 11, 121-136.
Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence
in education: A review. Ieee Access, 8, 75264-75278.
Chen, Z. (2022). Artificial intelligence-virtual trainer:
Innovative didactics aimed at personalized training
needs. Journal of the Knowledge Economy, 1-19.
Christensen, C., Raynor, M. E., & McDonald, R. (2013).
Disruptive innovation. Harvard Business Review
Brighton, MA, USA.
Costa, E., Wells, P., Wang, L., & Costa, G. (2022). The
electric vehicle and renewable energy: Changes in
boundary conditions that enhance business model
innovations. Journal of Cleaner Production, 333,
130034.
Czerwinski, F. (2021). Current trends in automotive
lightweighting strategies and materials. Materials,
14(21), 6631.
Davenport, T. H., & Prusak, L. (1998). Working
knowledge: How organizations manage what they
know. Harvard Business Press.
Easterby‐Smith, M., Lyles, M. A., & Tsang, E. W. (2008).
Inter ‐ organizational knowledge transfer: Current
themes and future prospects. Journal of management
studies, 45(4), 677-690.
Egbue, O., & Long, S. (2012). Barriers to widespread
adoption of electric vehicles: An analysis of consumer
attitudes and perceptions. Energy Policy, 48, 717-729.
Feng, S., & Magee, C. L. (2020). Technological
development of key domains in electric vehicles:
Improvement rates, technology trajectories and key
assignees. Applied Energy, 260, 114264.
Gupta, A. K., & Govindarajan, V. (2000). Knowledge flows
within multinational corporations. Strategic
management journal, 21(4), 473-496.
Hofmann, J., Guan, D., Chalvatzis, K., & Huo, H. (2016).
Assessment of electrical vehicles as a successful driver
for reducing CO2 emissions in China. Applied Energy,
184, 995-1003. https://doi.org/https://doi.org/10.
1016/j.apenergy.2016.06.042
Horowitz, C. A. (2016). Paris Agreement. International
Legal Materials, 55(4), 740-755. https://doi.org/10.
1017/S0020782900004253
Janiesch, C., Zschech, P., & Heinrich, K. (2021). Machine
learning and deep learning. Electronic Markets, 31(3),
685-695.
Kumar, M. S., & Revankar, S. T. (2017). Development
scheme and key technology of an electric vehicle: An
overview. Renewable and Sustainable Energy Reviews,
70, 1266-1285.
Li, Z., & Zhu, G. (2021). Knowledge transfer performance
of industry-university-research institute collaboration
in China: The moderating effect of partner difference.
Sustainability, 13(23), 13202.
Lombardi, R. (2019). Knowledge transfer and
organizational performance and business process: past,
present and future researches. Business Process
Management Journal, 25(1), 2-9. https://doi.org/
10.1108/BPMJ-02-2019-368
Lu, Y. (2019). Artificial intelligence: a survey on evolution,
models, applications and future trends. Journal of
Management Analytics, 6(1), 1-29.
Martinkenaite, I. (2011). Antecedents and consequences of
inter ‐ organizational knowledge transfer: Emerging
themes and openings for further research. Baltic
Journal of Management.
Meckling, J., & Nahm, J. (2019). The politics of technology
bans: Industrial policy competition and green goals for
the auto industry. Energy Policy, 126, 470-479.
Miller, T. (2019). Explanation in artificial intelligence:
Insights from the social sciences. Artificial intelligence,
267, 1-38.
Nilsson, N. J. (1982). Principles of artificial intelligence.
Springer Science & Business Media.
Nonaka, I. (1994). A dynamic theory of organizational
knowledge creation. Organization science, 5(1), 14-37.
Olaisen, J., & Revang, O. (2017). Working smarter and
greener: Collaborative knowledge sharing in virtual
global project teams. International Journal of
Information Management, 37(1), 1441-1448.
Pérez ‐ Nordtvedt, L., Kedia, B. L., Datta, D. K., &
Rasheed, A. A. (2008). Effectiveness and efficiency of
cross ‐ border knowledge transfer: An empirical
KMIS 2023 - 15th International Conference on Knowledge Management and Information Systems