REFERENCES 
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, 
J.,  ...  &  Zheng,  X.  (2016,  November).  Tensorflow:  a 
system for large-scale machine learning. In Osdi (Vol. 
16, No. 2016, pp. 265-283). 
Asher,  N.,  Hunter,  J.,  Morey,  M.,  Benamara,  F.,  & 
Afantenos,  S.  (2016,  May).  Discourse  structure  and 
dialogue acts in multiparty dialogue: the STAC corpus. 
In  10
th
 International Conference on Language 
Resources and Evaluation (LREC 2016)  (pp.  2721-
2727). 
Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer 
normalization. arXiv preprint arXiv:1607.06450. 
Chen, J. X.,  Ling, Z. H., & Dai, L. R. (2019). A Chinese 
Dataset  for  Identifying  Speakers  in  Novels.  In 
INTERSPEECH (pp. 1561-1565). 
Chen,  Y.,  Ling,  Z.  H.,  &  Liu,  Q.  F.  (2021).  A  Neural-
Network-Based  Approach  to  Identifying  Speakers  in 
Novels. In Interspeech (pp. 4114-4118). 
Clark,  K.,  Luong,  M.  T.,  Le,  Q.  V.,  &  Manning,  C.  D. 
(2020).  Electra:  Pre-training  text  encoders  as 
discriminators  rather  than  generators.  arXiv preprint 
arXiv:2003.10555. 
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). 
Bert: Pre-training of deep bidirectional transformers for 
language  understanding.  arXiv preprint 
arXiv:1810.04805. 
Ding, N., Hu, S., Zhao, W., Chen, Y., Liu, Z., Zheng, H. T., 
&  Sun,  M.  (2021).  Openprompt:  An  open-source 
framework  for  prompt-learning.  arXiv preprint 
arXiv:2111.01998. 
Elson,  D.,  &  McKeown,  K.  (2010,  July).  Automatic 
attribution  of  quoted  speech  in  literary  narrative.  In 
Proceedings of the AAAI Conference on Artificial 
Intelligence (Vol. 24, No. 1, pp. 1013-1019). 
Glass,  K.,  &  Bangay,  S.  (2007,  November).  A  naive 
salience-based  method  for  speaker  identification  in 
fiction  books.  In  Proceedings of the 18th Annual 
Symposium of the Pattern Recognition Association of 
South Africa (PRASA’07) (pp. 1-6). 
Gu, J. C., Li, T., Liu, Q., Ling, Z. H., Su, Z., Wei, S., & 
Zhu,  X.  (2020,  October).  Speaker-aware  BERT  for 
multi-turn  response  selection  in  retrieval-based 
chatbots. In Proceedings of the 29th ACM International 
Conference on Information & Knowledge Management 
(pp. 2041-2044). 
Gu, J. C., Tao, C., Ling, Z. H., Xu, C., Geng, X., & Jiang, 
D. (2021). MPC-BERT: A pre-trained language model 
for  multi-party  conversation  understanding.  arXiv 
preprint arXiv:2106.01541. 
Gu, J. C., Tao, C., & Ling, Z. H. (2022). Who says what to 
whom:  A  survey  of  multi-party  conversations.  In 
Proceedings of the Thirty-First International Joint 
Conference on Artificial Intelligence (IJCAI-22). 
Hendrycks,  D.,  &  Gimpel,  K.  (2016).  A  baseline  for 
detecting  misclassified  and  out-of-distribution 
examples  in  neural  networks.  arXiv preprint 
arXiv:1610.02136. 
Hoey,  M.  (2001).  Textual  interaction:  An  introduction  to 
written discourse analysis. Psychology Press. 
Hu,  W.,  Chan,  Z.,  Liu,  B.,  Zhao,  D.,  Ma,  J.,  &  Yan,  R. 
(2019).  Gsn:  A  graph-structured  network  for  multi-
party dialogues. arXiv preprint arXiv:1905.13637. 
Joty,  S.,  Carenini,  G.,  &  Ng,  R.  (2012,  July).  A  novel 
discriminative framework for sentence-level discourse 
analysis. In Proceedings of the 2012 Joint Conference 
on Empirical Methods in Natural Language Processing 
and Computational Natural Language Learning  (pp. 
904-915). 
Kingma,  D.  P.,  &  Ba,  J.  (2014).  Adam:  A  method  for 
stochastic  optimization.  arXiv preprint 
arXiv:1412.6980. 
Le, R., Hu, W., Shang, M., You, Z., Bing, L., Zhao, D., & 
Yan, R. (2019, November). Who is speaking to whom? 
learning to identify utterance addressee in multi-party 
conversations. In Proceedings of the 2019 Conference 
on Empirical Methods in Natural Language Processing 
and the 9th International Joint Conference on Natural 
Language Processing  (EMNLP-IJCNLP)  (pp.  1909-
1919). 
Li, J., Liu, M., Kan, M. Y., Zheng, Z., Wang, Z., Lei, W., 
... & Qin, B. (2020). Molweni: A challenge multiparty 
dialogues-based  machine  reading  comprehension 
dataset  with  discourse  structure.  arXiv preprint 
arXiv:2004.05080. 
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... 
& Stoyanov, V. (2019). Roberta: A robustly optimized 
bert  pretraining  approach.  arXiv preprint 
arXiv:1907.11692. 
Liu, L., Zhang, Z., Zhao, H., Zhou, X., & Zhou, X. (2021, 
May). Filling the gap of utterance-aware and speaker-
aware  representation  for  multi-turn  dialogue.  In 
Proceedings of the AAAI Conference on Artificial 
Intelligence (Vol. 35, No. 15, pp. 13406-13414). 
Lowe,  R.,  Pow,  N.,  Serban,  I.,  &  Pineau,  J.  (2015).  The 
ubuntu dialogue corpus: A large dataset for research in 
unstructured  multi-turn  dialogue  systems.  arXiv 
preprint arXiv:1506.08909. 
Ma, X., Zhang, Z., & Zhao, H. (2021). Enhanced speaker-
aware multi-party multi-turn dialogue comprehension. 
arXiv preprint arXiv:2109.04066. 
Marreiros, A. C., Daunizeau, J., Kiebel, S. J., & Friston, K. 
J.  (2008).  Population  dynamics:  variance  and  the 
sigmoid  activation function. Neuroimage, 42(1),  147-
157. 
Meng,  Z.,  Mou,  L.,  &  Jin,  Z.  (2017,  November). 
Hierarchical RNN  with  static  sentence-level attention 
for text-based speaker change detection. In Proceedings 
of the 2017 ACM on Conference on Information and 
Knowledge Management (pp. 2203-2206). 
Meng, Z., Mou, L., & Jin, Z. (2018, April). Towards neural 
speaker modeling in multi-party conversation: The task, 
dataset,  and  models.  In  Proceedings of the AAAI 
Conference on Artificial Intelligence (Vol. 32, No. 1). 
O’Keefe,  T.,  Pareti,  S.,  Curran,  J.  R.,  Koprinska,  I.,  & 
Honnibal,  M.  (2012,  July).  A  sequence  labelling 
approach  to  quote  attribution.  In  Proceedings of the 
2012 Joint Conference on Empirical Methods in