REFERENCES
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., ... & Zheng, X. (2016, November). Tensorflow: a
system for large-scale machine learning. In Osdi (Vol.
16, No. 2016, pp. 265-283).
Asher, N., Hunter, J., Morey, M., Benamara, F., &
Afantenos, S. (2016, May). Discourse structure and
dialogue acts in multiparty dialogue: the STAC corpus.
In 10
th
International Conference on Language
Resources and Evaluation (LREC 2016) (pp. 2721-
2727).
Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer
normalization. arXiv preprint arXiv:1607.06450.
Chen, J. X., Ling, Z. H., & Dai, L. R. (2019). A Chinese
Dataset for Identifying Speakers in Novels. In
INTERSPEECH (pp. 1561-1565).
Chen, Y., Ling, Z. H., & Liu, Q. F. (2021). A Neural-
Network-Based Approach to Identifying Speakers in
Novels. In Interspeech (pp. 4114-4118).
Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D.
(2020). Electra: Pre-training text encoders as
discriminators rather than generators. arXiv preprint
arXiv:2003.10555.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018).
Bert: Pre-training of deep bidirectional transformers for
language understanding. arXiv preprint
arXiv:1810.04805.
Ding, N., Hu, S., Zhao, W., Chen, Y., Liu, Z., Zheng, H. T.,
& Sun, M. (2021). Openprompt: An open-source
framework for prompt-learning. arXiv preprint
arXiv:2111.01998.
Elson, D., & McKeown, K. (2010, July). Automatic
attribution of quoted speech in literary narrative. In
Proceedings of the AAAI Conference on Artificial
Intelligence (Vol. 24, No. 1, pp. 1013-1019).
Glass, K., & Bangay, S. (2007, November). A naive
salience-based method for speaker identification in
fiction books. In Proceedings of the 18th Annual
Symposium of the Pattern Recognition Association of
South Africa (PRASA’07) (pp. 1-6).
Gu, J. C., Li, T., Liu, Q., Ling, Z. H., Su, Z., Wei, S., &
Zhu, X. (2020, October). Speaker-aware BERT for
multi-turn response selection in retrieval-based
chatbots. In Proceedings of the 29th ACM International
Conference on Information & Knowledge Management
(pp. 2041-2044).
Gu, J. C., Tao, C., Ling, Z. H., Xu, C., Geng, X., & Jiang,
D. (2021). MPC-BERT: A pre-trained language model
for multi-party conversation understanding. arXiv
preprint arXiv:2106.01541.
Gu, J. C., Tao, C., & Ling, Z. H. (2022). Who says what to
whom: A survey of multi-party conversations. In
Proceedings of the Thirty-First International Joint
Conference on Artificial Intelligence (IJCAI-22).
Hendrycks, D., & Gimpel, K. (2016). A baseline for
detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint
arXiv:1610.02136.
Hoey, M. (2001). Textual interaction: An introduction to
written discourse analysis. Psychology Press.
Hu, W., Chan, Z., Liu, B., Zhao, D., Ma, J., & Yan, R.
(2019). Gsn: A graph-structured network for multi-
party dialogues. arXiv preprint arXiv:1905.13637.
Joty, S., Carenini, G., & Ng, R. (2012, July). A novel
discriminative framework for sentence-level discourse
analysis. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (pp.
904-915).
Kingma, D. P., & Ba, J. (2014). Adam: A method for
stochastic optimization. arXiv preprint
arXiv:1412.6980.
Le, R., Hu, W., Shang, M., You, Z., Bing, L., Zhao, D., &
Yan, R. (2019, November). Who is speaking to whom?
learning to identify utterance addressee in multi-party
conversations. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP) (pp. 1909-
1919).
Li, J., Liu, M., Kan, M. Y., Zheng, Z., Wang, Z., Lei, W.,
... & Qin, B. (2020). Molweni: A challenge multiparty
dialogues-based machine reading comprehension
dataset with discourse structure. arXiv preprint
arXiv:2004.05080.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ...
& Stoyanov, V. (2019). Roberta: A robustly optimized
bert pretraining approach. arXiv preprint
arXiv:1907.11692.
Liu, L., Zhang, Z., Zhao, H., Zhou, X., & Zhou, X. (2021,
May). Filling the gap of utterance-aware and speaker-
aware representation for multi-turn dialogue. In
Proceedings of the AAAI Conference on Artificial
Intelligence (Vol. 35, No. 15, pp. 13406-13414).
Lowe, R., Pow, N., Serban, I., & Pineau, J. (2015). The
ubuntu dialogue corpus: A large dataset for research in
unstructured multi-turn dialogue systems. arXiv
preprint arXiv:1506.08909.
Ma, X., Zhang, Z., & Zhao, H. (2021). Enhanced speaker-
aware multi-party multi-turn dialogue comprehension.
arXiv preprint arXiv:2109.04066.
Marreiros, A. C., Daunizeau, J., Kiebel, S. J., & Friston, K.
J. (2008). Population dynamics: variance and the
sigmoid activation function. Neuroimage, 42(1), 147-
157.
Meng, Z., Mou, L., & Jin, Z. (2017, November).
Hierarchical RNN with static sentence-level attention
for text-based speaker change detection. In Proceedings
of the 2017 ACM on Conference on Information and
Knowledge Management (pp. 2203-2206).
Meng, Z., Mou, L., & Jin, Z. (2018, April). Towards neural
speaker modeling in multi-party conversation: The task,
dataset, and models. In Proceedings of the AAAI
Conference on Artificial Intelligence (Vol. 32, No. 1).
O’Keefe, T., Pareti, S., Curran, J. R., Koprinska, I., &
Honnibal, M. (2012, July). A sequence labelling
approach to quote attribution. In Proceedings of the
2012 Joint Conference on Empirical Methods in