large time series datasets. Intelligent Data Analysis,
18:793–817.
Aghabozorgi, S., Ying Wah, T., Herawan, T., Jalab, H. A.,
Shaygan, M. A., and Jalali, A. (2014). A hybrid algo-
rithm for clustering of time series data based on affin-
ity search technique. The Scientific World Journal,
2014.
Bagnall, A., Lines, J., Bostrom, A., Large, J., and Keogh,
E. (2017). The great time series classification bake
off: a review and experimental evaluation of recent
algorithmic advances. Data Mining and Knowledge
Discovery, 31(3):606–660.
Benavoli, A., Corani, G., and Mangili, F. (2016). Should we
really use post-hoc tests based on mean-ranks? Jour-
nal of Machine Learning Research, 17:1–10.
Bradley, P. S. and Fayyad, U. M. (1998). Refining ini-
tial points for k-means clustering. In Proceedings
of the Fifteenth International Conference on Machine
Learning, ICML ’98, page 91–99, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.
Brill, M., Fluschnik, T., Froese, V., Jain, B., Niedermeier,
R., and Schultz, D. (2019). Exact mean computation
in dynamic time warping spaces. Data Mining and
Knowledge Discovery, 33:252–291.
Chen, L. and Ng, R. (2004). On the marriage of Lp-norms
and edit distance. In proceedings of the 30th Interna-
tional Conference on Very Large Data Bases.
Dau, H., Bagnall, A., Kamgar, K., Yeh, M., Zhu, Y.,
Gharghabi, S., Ratanamahatana, C., Chotirat, A., and
Keogh, E. (2019). The UCR time series archive.
IEEE/CAA Journal of Automatica Sinica, 6(6):1293–
1305.
Dem
ˇ
sar, J. (2006). Statistical comparisons of classifiers
over multiple data sets. Journal of Machine Learning
Research, 7:1–30.
Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and
Keogh, E. (2008). Querying and mining of time series
data: Experimental comparison of representations and
distance measures. In proceedings of the 34th Inter-
national Conference on Very Large Data Bases.
Garc
´
ıa, S. and Herrera, F. (2008). An extension on “sta-
tistical comparisons of classifiers over multiple data
sets” for all pairwise comparisons. Journal of Ma-
chine Learning Research, 9:2677–2694.
Guijo-Rubio, D., Middlehurst, M., Arcencio, G., Silva,
D. F., and Bagnall, A. (2023). Unsupervised feature
based algorithms for time series extrinsic regression.
arXiv preprint arXiv:2305.01429.
Gupta, L., Molfese, D., Tammana, R., and Simos, P. (1996).
Nonlinear alignment and averaging for estimating the
evoked potential. IEEE Transactions on Biomedical
Engineering, 43(4):348–356.
Gusfield, D. (1997). Algorithms on Strings, Trees, and Se-
quences: Computer Science and Computational Biol-
ogy. Cambridge University Press.
Hills, J., Lines, J., Baranauskas, E., Mapp, J., and Bagnall,
A. (2014). Classification of time series by shapelet
transformation. Data Mining and Knowledge Discov-
ery, 28(4):851–881.
Holder, C., Middlehurst, M., and Bagnall, A. (2022).
A review and evaluation of elastic distance func-
tions for time series clustering. arXiv preprint
arXiv:2205.15181.
Holznigenkemper, J. and Seeger, C. K. B. (2023). On com-
puting exact means of time series using the move-
split-merge metric. Data Mining and Knowledge Dis-
covery, 37(2):595–626.
Lafabregue, B., Weber, J., Gancarski, P., and Forestier, G.
(2022). End-to-end deep representation learning for
time series clustering: a comparative study. Data Min-
ing and Knowledge Discovery, 36:29—-81.
Li, J., Izakian, H., Pedrycz, W., and Jamal, I. (2021).
Clustering-based anomaly detection in multivari-
ate time series data. Applied Soft Computing,
100:106919.
Liao, T. W. (2005). Clustering of time series data—a survey.
Pattern recognition, 38(11):1857–1874.
Lines, J. and Bagnall, A. (2014). Ensembles of elastic dis-
tance measures for time series classification. In pro-
ceedings of the 14th SIAM International Conference
on Data Mining.
Lines, J. and Bagnall, A. (2015). Time series classification
with ensembles of elastic distance measures. Data
Mining and Knowledge Discovery, 29:565–592.
Lines, J., Taylor, S., and Bagnall, A. (2018). Time se-
ries classification with HIVE-COTE: The hierarchi-
cal vote collective of transformation-based ensembles.
ACM Transactions Knowledge Discovery from Data,
12(5):1–36.
Lloyd, S. P. (1982). Least squares quantization in pcm.
IEEE Trans. Inf. Theory, 28:129–136.
MacQueen, J. et al. (1967). Some methods for classification
and analysis of multivariate observations. In Proceed-
ings of the fifth Berkeley symposium on mathematical
statistics and probability, volume 1, pages 281–297.
Marteau, P. (2009). Time warp edit distance with stiffness
adjustment for time series matching. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
31(2):306–318.
McDowell, I. C., Manandhar, D., Vockley, C. M., Schmid,
A. K., Reddy, T. E., and Engelhardt, B. E. (2018).
Clustering gene expression time series data using an
infinite gaussian process mixture model. PLoS com-
putational biology, 14(1):e1005896.
Middlehurst, M., Sch
¨
afer, P., and Bagnall, A. (2023). Bake
off redux: a review and experimental evaluation of
recent time series classification algorithms. arXiv
preprint arXiv:2304.13029.
Nikolaou, A., Guti
´
errez, P. A., Dur
´
an, A., Dicaire,
I., Fern
´
andez-Navarro, F., and Herv
´
as-Mart
´
ınez, C.
(2015). Detection of early warning signals in paleo-
climate data using a genetic time series segmentation
algorithm. Climate Dynamics, 44:1919–1933.
Paparrizos, J. and Gravano, L. (2015). k-shape: Efficient
and accurate clustering of time series. In Proceedings
of the 2015 ACM SIGMOD International Conference
on Management of Data, pages 1855–1870.
Paparrizos, J., Liu, C., Elmore, A., and Franklin, M.
(2020). Debunking four long-standing misconcep-
Barycentre Averaging for the Move-Split-Merge Time Series Distance Measure
61