Czyzewski, M. A., Laskowski, A., and Wasik, S. (2021).
Chessboard and chess piece recognition with the sup-
port of neural networks. Foundations of Computing
and Decision Sciences, 45.
Dai, J., Li, Y., He, K., and Sun, J. (2016). R-fcn: Object de-
tection via region-based fully convolutional networks.
In Advances in Neural Information Processing Sys-
tems.
Dai, X., Chen, Y., Xiao, B., Chen, D., Liu, M., Yuan, L.,
and Zhang, L. (2021). Dynamic head: Unifying ob-
ject detection heads with attentions. In Proceedings of
the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition.
Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. In Proceedings - IEEE
Computer Society Conference on Computer Vision
and Pattern Recognition.
Danner, C. and Kafafy, M. (2015). Visual chess recogni-
tion. https:// web.stanford.edu/ class/ ee368/Project\
Spring\ 1415/Reports/ Danner\ Kafafy.pdf .
DGT (1998). Electronic chessboards. http:
//digitalgametechnology.com.
Ding, J. (2016). Chessvision : Chess board and piece recog-
nition. https:// web.stanford.edu/ class/cs231a/ prev\
projects\ 2016/ CS\ 231A\ Final\ Report.pdf .
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996).
A density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of
the 2nd International Conference on Knowledge Dis-
covery and Data Mining.
Ge, Z., Liu, S., Wang, F., Li, Z., and Sun, J. (2021).
Yolox: Exceeding yolo series in 2021. ArXiv,
abs/2107.08430.
Girshick, R. (2015). Fast r-cnn. In International Conference
on Computer Vision.
Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014).
Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the
IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition.
Gonc¸alves, J., Lima, J., and Leit
˜
ao, P. (2005). Chess robot
system : a multi-disciplinary experience in automa-
tion. In Spanish Portuguese Congress on Electrical
Engineering; AEDIE: Marbella, Spain.
Gu, J., Wu, B., Fan, L., Huang, J., Cao, S., Xiang, Z., and
Hua, X.-S. (2022). Homography loss for monocular
3d object detection. In Proceedings of the IEEE Com-
puter Society Conference on Computer Vision and
Pattern Recognition.
Hack, J. and Ramakrishnan, P. (2014). Cvchess:
Computer vision chess analytics. https:
//cvgl.stanford.edu/teaching/ cs231a\ winter1415/
prev/ projects/chess.pdf .
Harris, C. G. and Stephens, M. J. (1988). A combined cor-
ner and edge detector. In Alvey Vision Conference.
He, K., Gkioxari, G., Doll
´
ar, P., and Girshick, R. (2020).
Mask r-cnn. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 42.
Jassim, F. A. and Altaani, F. H. (2013). Hybridization of
otsu method and median filter for color image seg-
mentation. ArXiv, abs/1305.1052.
Jocher, G. (2020). ultralytics/yolov5: v6.2 - YOLOv5.
https://github.com/ultralytics/ yolov5.
Keener, G. (2022). Chess is booming. The New York Times.
Khan, A. M. and Kesavan, R. (2014). Design and devel-
opment of autonomous chess playing robot. In Int. J.
Innov. Sci. Eng. Technol., pages 1–4.
Kuhn, H. W. (1955). The hungarian method for the assign-
ment problem. Naval Research Logistics (NRL), 52.
Law, H. and Deng, J. (2020). Cornernet: Detecting objects
as paired keypoints. International Journal of Com-
puter Vision, 128.
Li, F., Zhang, H., Liu, S., Guo, J., Ni, L. M., and Zhang, L.
(2022). Dn-detr: Accelerate detr training by introduc-
ing query denoising. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 13619–13627.
Lin, T. Y., Goyal, P., Girshick, R., He, K., and Dollar, P.
(2020). Focal loss for dense object detection. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 42.
Liu, L., Lu, J., Xu, C., Tian, Q., and Zhou, J. (2019). Deep
fitting degree scoring network for monocular 3d ob-
ject detection. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition.
Liu, S., Li, F., Zhang, H., Yang, X., Qi, X., Su, H., Zhu, J.,
and Zhang, L. (2022). DAB-DETR: Dynamic anchor
boxes are better queries for DETR. In International
Conference on Learning Representations.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,
C. Y., and Berg, A. C. (2016). Ssd: Single shot multi-
box detector. In Lecture Notes in Computer Science,
volume 9905 LNCS.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International Journal of Com-
puter Vision.
Lu, X., Yao, J., Li, K., and Li, L. (2015). Cannylines: A
parameter-free line segment detector. In Proceedings -
International Conference on Image Processing, ICIP.
Lyu, R. (2021). Nanodet-plus: Super fast and high accuracy
lightweight anchor-free object detection model. https:
//github.com/RangiLyu/nanodet.
Mallas
´
en Quintana, D., Del Barrio Garc
´
ıa, A. A., and Pri-
eto Mat
´
ıas, M. (2021). Livechess2fen: A framework
for classifying chess pieces based on cnns. ArXiv,
abs/2012.06858.
Matuszek, C., Mayton, B., Aimi, R., Deisenroth, M. P., Bo,
L., Chu, R., Kung, M., Grand, L. L., Smith, J. R.,
and Fox, D. (2011). Gambit: An autonomous chess-
playing robotic system. In Proceedings - IEEE Inter-
national Conference on Robotics and Automation.
McNally, W., Walters, P., Vats, K., Wong, A., and McPhee,
J. (2021). Deepdarts: Modeling keypoints as ob-
jects for automatic scorekeeping in darts using a single
camera. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR)
Workshops, pages 4547–4556.
VICE: View-Invariant Chess Estimation
59