on Application of Information and Communication
Technologies (AICT), pages 1–6. IEEE, 2020.
Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian ap-
proximation: Representing model uncertainty in deep
learning.
Goan, E. and Fookes, C. (2020). Bayesian neural networks:
An introduction and survey. In Case Studies in Ap-
plied Bayesian Data Science, pages 45–87. Springer
International Publishing.
Hornik, K., Stinchcombe, M., and White, H. (1989). Multi-
layer feedforward networks are universal approxima-
tors. Neural networks, 2(5):359–366.
Karniadakis, G., Kevrekidis, Y., Lu, L., Perdikaris, P., Wang,
S., and Yang, L. (2021). Physics-informed machine
learning. Nature Reviews Physics, 3:422–440.
Kikken, E., Depraetere, B., and Willems, J. (2022). Bridging
dynamic neural networks and optimal control. In 41st
Benelux Meeting on Systems and Control, Brussels,
Belgium.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Lakshminarayanan, B., Pritzel, A., and Blundell, C. (2017).
Simple and scalable predictive uncertainty estimation
using deep ensembles.
Ljung, L. (1998). System Identification, pages 163–173.
Birkhäuser Boston, Boston, MA.
Morimoto, M., Fukami, K., Maulik, R., Vinuesa, R., and
Fukagata, K. (2022). Assessments of epistemic uncer-
tainty using gaussian stochastic weight averaging for
fluid-flow regression. Physica D: Nonlinear Phenom-
ena, 440:133454.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,
Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner,
B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch:
An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing
Systems 32, pages 8024–8035. Curran Associates, Inc.
Raissi, M., Perdikaris, P., and Karniadakis, G. (2019).
Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems
involving nonlinear partial differential equations. Jour-
nal of Computational Physics, 378:686–707.
Salzmann, T., Kaufmann, E., Pavone, M., Scaramuzza, D.,
and Ryll, M. (2022). Neural-mpc: Deep learning model
predictive control for quadrotors and agile robotic plat-
forms. arXiv preprint arXiv:2203.07747.
Schiassi, E., Furfaro, R., Leake, C., De Florio, M., John-
ston, H., and Mortari, D. (2021). Extreme theory of
functional connections: A fast physics-informed neu-
ral network method for solving ordinary and partial
differential equations. Neurocomputing, 457:334–356.
Schoukens, J. and Ljung, L. (2019). Nonlinear system iden-
tification: A user-oriented road map. IEEE Control
Systems Magazine, 39(6):28–99.
Seitzer, M., Tavakoli, A., Antic, D., and Martius, G. (2022).
On the pitfalls of heteroscedastic uncertainty estima-
tion with probabilistic neural networks. arXiv preprint
arXiv:2203.09168.
Spielberg, N. A., Brown, M., and Gerdes, J. C. (2022). Neu-
ral network model predictive motion control applied to
automated driving with unknown friction. IEEE Trans-
actions on Control Systems Technology, 30(5):1934–
1945.
Streit, R. L. and Luginbuhl, T. E. (1994). Maximum likeli-
hood training of probabilistic neural networks. IEEE
Transactions on neural networks, 5(5):764–783.
Wächter, A. and Biegler, L. T. (2006). On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical
programming, 106(1):25:57.
Willems, J., Hostens, E., Depraetere, B., Steinhauser, A.,
and Swevers, J. (2018). Learning control in practice:
Novel paradigms for industrial applications. In IEEE
Conference on Control Technology and Applications
(CCTA).
Yang, L., Meng, X., and Karniadakis, G. E. (2021). B-pinns:
Bayesian physics-informed neural networks for for-
ward and inverse pde problems with noisy data. Jour-
nal of Computational Physics, 425:109913.
Probabilistic Physics-Augmented Neural Networks for Robust Control Applied to a Slider-Crank System
161