Fernández, A., García, S., Galar, M., Prati, R. C.,
Krawczyk, B., & Herrera, F. (2018). Cost-Sensitive
Learning. Learning from Imbalanced Data Sets, 63–78.
https://doi.org/10.1007/978-3-319-98074-4_4
Freitas, A., Brazdil, P., & Costa-Pereira, A. (2009). Cost-
sensitive learning in medicine. In Data Mining and
Medical Knowledge Management: Cases and
Applications (pp. 57–75). IGI Global.
https://doi.org/10.4018/978-1-60566-218-3.ch003
Galdran, A., Dolz, J., Chakor, H., Lombaert, H., & Ben
Ayed, I. (2020). Cost-Sensitive Regularisation for
Diabetic Retinopathy Grading from Eye Fundus
Images. Lecture Notes in Computer Science (Including
Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 12265 LNCS, 665–
674. https://doi.org/10.1007/978-3-030-59722-1_64/
COVER
Gan, D., Shen, J., An, B., Xu, M., & Liu, N. (2020).
Integrating TANBN with cost sensitive classification
algorithm for imbalanced data in medical diagnosis.
Computers & Industrial Engineering, 140, 106266.
https://doi.org/10.1016/J.CIE.2019.106266
Hu, K., Huang, Y., Huang, W., Tan, H., Chen, Z., Zhong,
Z., … Gao, X. (2021). Deep supervised learning using
self-adaptive auxiliary loss for COVID-19 diagnosis
from imbalanced CT images. Neurocomputing, 458,
232–245. https://doi.org/10.1016/J.NEUCOM.2021.0
6.012
Johnson, K. W., Torres Soto, J., Glicksberg, B. S., Shameer,
K., Miotto, R., Ali, M., … Dudley, J. T. (2018).
Artificial Intelligence in Cardiology. Journal of the
American College of Cardiology, 71(23), 2668–2679.
https://doi.org/10.1016/J.JACC.2018.03.521
Khan, S. H., Hayat, M., Bennamoun, M., Sohel, F. A., &
Togneri, R. (2018). Cost-sensitive learning of deep
feature representations from imbalanced data. IEEE
Transactions on Neural Networks and Learning
Systems, 29(8), 3573–3587. https://doi.org/10.1109/
TNNLS.2017.2732482
Khushi, M., Shaukat, K., Alam, T. M., Hameed, I. A.,
Uddin, S., Luo, S., … Reyes, M. C. (2021). A
Comparative Performance Analysis of Data
Resampling Methods on Imbalance Medical Data.
IEEE Access, 9, 109960–109975. https://doi.org/
10.1109/ACCESS.2021.3102399
Kitchenham, B., & Charters, S. (2007, April). Guidelines
for performing Systematic Literature Reviews in
Software Engineering. Technical Report, Ver. 2.3
Technical Report EBSE.
Liu, Y., Li, Q., Wang, K., Liu, J., He, R., Yuan, Y., &
Zhang, H. (2021). Automatic Multi-Label ECG
Classification with Category Imbalance and Cost-
Sensitive Thresholding. Biosensors, 11(11), 453.
https://doi.org/10.3390/BIOS11110453
López, V., Fernández, A., García, S., Palade, V., & Herrera,
F. (2013). An insight into classification with
imbalanced data: Empirical results and current trends
on using data intrinsic characteristics. Information
Sciences, 250
, 113–141. https://doi.org/10.1016/
J.INS.2013.07.007
Mental health: neurological disorders. (2016). Retrieved
March 16, 2023, from https://www.who.int/news-
room/questions-and-answers/item/mental-health-
neurological-disorders
Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008).
Systematic Mapping Studies in Software Engineering.
12th International Conference on Evaluation and
Assessment in Software Engineering, EASE 2008.
https://doi.org/10.14236/EWIC/EASE2008.8
Petersen, K., Vakkalanka, S., & Kuzniarz, L. (2015).
Guidelines for conducting systematic mapping studies
in software engineering: An update. Information and
Software Technology, 64, 1–18. https://doi.org/
10.1016/j.infsof.2015.03.007
Sahin, Y., Bulkan, S., & Duman, E. (2013). A cost-sensitive
decision tree approach for fraud detection. Expert
Systems with Applications, 40(15), 5916–5923.
https://doi.org/10.1016/J.ESWA.2013.05.021
Specialty Profiles | Careers in Medicine. (2023). Retrieved
March 15, 2023, from https://careersinmedicine.a
amc.org/explore-options/specialty-profiles
Sterner, P., Goretzko, D., & Pargent, F. (2021). Everything
has its price: Foundations of cost-sensitive learning and
its application in psychology. [Preprint]. PsyArXiv.
Https://Doi. Org/10.31234/Osf. Io/7asgz.
Sung, S. F., Hung, L. C., & Hu, Y. H. (2021). Developing
a stroke alert trigger for clinical decision support at
emergency triage using machine learning. International
Journal of Medical Informatics, 152. https://doi.org/
10.1016/J.IJMEDINF.2021.104505
Wang, K. J., Makond, B., & Wang, K. M. (2013). An
improved survivability prognosis of breast cancer by
using sampling and feature selection technique to solve
imbalanced patient classification data. BMC Medical
Informatics and Decision Making, 13(1), 124.
https://doi.org/10.1186/1472-6947-13-124
Yang, H., Li, X., Cao, H., Cui, Y., Luo, Y., Liu, J., &
Zhang, Y. (2021). Using machine learning methods to
predict hepatic encephalopathy in cirrhotic patients
with unbalanced data. Computer Methods and
Programs in Biomedicine, 211. https://doi.org/10.1016/
J.CMPB.2021.106420
Zhao, Y., Wong, Z. S. Y., & Tsui, K. L. (2018). A
Framework of Rebalancing Imbalanced Healthcare
Data for Rare Events' Classification: A Case of Look-
Alike Sound-Alike Mix-Up Incident Detection. Journal
of Healthcare Engineering, 2018, 6275435.
https://doi.org/10.1155/2018/627543