Figure 6: Confusion matrix of a run of the VGG11 model
with spectrogram data at the input (VGG11 SPEC) at SNR
−20 dB. The average accuracy is 0.63 and the average bal-
anced accuracy is 0.28.
REFERENCES
Al-Sa’d, M. F., Al-Ali, A., Mohamed, A., Khattab, T., and
Erbad, A. (2019). Rf-based drone detection and iden-
tification using deep learning approaches: An initia-
tive towards a large open source drone database. Fu-
ture Generation Computer Systems, 100:86–97.
Allahham, M. S., Al-Sa’d, M. F., Al-Ali, A., Mohamed, A.,
Khattab, T., and Erbad, A. (2019). Dronerf dataset: A
dataset of drones for rf-based detection, classification
and identification. Data in Brief, 26:104313.
Bottou, L. (1999). On-Line Learning and Stochastic Ap-
proximations, pages 9–42. Cambridge University
Press, USA.
Chen, L.-C., Collins, M. D., Zhu, Y., Papandreou, G.,
Zoph, B., Schroff, F., Adam, H., and Shlens, J.
(2018). Searching for efficient multi-scale architec-
tures for dense image prediction. In Proceedings of the
32nd International Conference on Neural Information
Processing Systems, NIPS’18, page 8713–8724, Red
Hook, NY, USA. Curran Associates Inc.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on com-
puter vision and pattern recognition, pages 248–255.
Ieee.
Ge, C., Yang, S., Sun, W., Luo, Y., and Luo, C. (2021).
For rf signal-based uav states recognition, is pre-
processing still important at the era of deep learning?
In 2021 7th International Conference on Computer
and Communications (ICCC), pages 2292–2296.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Pereira, F., Burges, C., Bottou, L.,
and Weinberger, K., editors, Advances in Neural In-
formation Processing Systems, volume 25. Curran As-
sociates, Inc.
Kunze, S. and Saha, B. (2022). Drone classification with a
convolutional neural network applied to raw iq data.
Institute of Electrical and Electronics Engineers Inc.
Long, J., Shelhamer, E., and Darrell, T. (2015). Fully con-
volutional networks for semantic segmentation. In
2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 3431–3440.
Medaiyese, O. O., Ezuma, M., Lauf, A. P., and Guvenc,
I. (2021). Semi-supervised learning framework for
uav detection. volume 2021-September, pages 1185–
1190. Institute of Electrical and Electronics Engineers
Inc.
Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep
face recognition. In Xianghua Xie, Mark W. Jones, G.
K. L. T., editor, Proceedings of the British Machine Vi-
sion Conference (BMVC), pages 41.1–41.12. BMVA
Press.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., Kopf, A., Yang, E., De-
Vito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep
learning library. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d'Alch
´
e-Buc, F., Fox, E., and Gar-
nett, R., editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.
Simonyan, K. and Zisserman, A. (2015). Very deep con-
volutional networks for large-scale image recognition.
In Bengio, Y. and LeCun, Y., editors, 3rd Interna-
tional Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings.
Swinney, C. J. and Woods, J. C. (2020). Unmanned
aerial vehicle flight mode classification using convo-
lutional neural network and transfer learning. In 2020
16th International Computer Engineering Conference
(ICENCO), pages 83–87.
Swinney, C. J. and Woods, J. C. (2021). Rf detection and
classification of unmanned aerial vehicles in environ-
ments with wireless interference. pages 1494–1498.
Institute of Electrical and Electronics Engineers Inc.
Taha, B. and Shoufan, A. (2019). Machine learning-based
drone detection and classification: State-of-the-art in
research. IEEE Access, 7:138669–138682.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett,
M., Wilson, J., Millman, K. J., Mayorov, N., Nel-
son, A. R. J., Jones, E., Kern, R., Larson, E., Carey,
C. J., Polat,
˙
I., Feng, Y., Moore, E. W., VanderPlas,
J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen,
I., Quintero, E. A., Harris, C. R., Archibald, A. M.,
Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and
SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python.
Nature Methods, 17:261–272.
Zeiler, M. D. and Fergus, R. (2014). Visualizing and under-
standing convolutional networks. In Fleet, D., Pajdla,
T., Schiele, B., and Tuytelaars, T., editors, Computer
Vision – ECCV 2014, pages 818–833, Cham. Springer
International Publishing.
Robust Drone Detection and Classification from Radio Frequency Signals Using Convolutional Neural Networks
503