Zargani, J., Necsulescu, R., 2002, “Extended Kalman filter-
based sensor fusion for operational space control of a
robot arm”, IEEE Transactions on Instrumentation and
Measurement, Vol 51, pp 1279-1282
Zarchan, P., 2000 “Fundamentals of Kalman Filtering: A
Practical Approach. American Institute of Aeronautics
and Astronautics” , Incorporated. ISBN 978-1-56347-
455-2
Koblents, E., 2016, “A nonlinear population Monte Carlo
scheme for the Bayesian estimation of parameters of α-
stable distributions” Computational Statistics & Data
Analysis, Vol 95,PP 57-74
Bradley, P., 1992, “A Monte Carlo Approach to Nonnormal
and Nonlinear State-Space Modeling”, Journal of
American Statistical Association, Vol 87
Wenk, C., 1980, “A Multiple Model Adaptive Dual Control
Algorithm for Stochastic Systems with Unknown
Parameters”, IEEE Transactions on Automatic Control,
Vol 25.
D. Bigoni, D., 2012, “Comparison of Classicaland Modern
Uncertainty Quantification Methods for the Calculation
of Critical Speeds in Railway Vehicle Dynamics”. In:
13th mini Conference on Vehicle System Dynamics,
Identification and Anomalies. Budapest,Hungary
Beck, J. V. and Arnold, K. J., 1977, “Parameter Estimation
in Engineering and Science”, Wiley, New York, NY
Cunha, J.B., 2003, “Greenhouse Climate Models: An
Overview”, EFITA conference
Zhang, Z., 1997, “Parameter Estimation Techniques: A
Tutorial with Application to Conic Fitting, Image and
Vision Computing”, Vol 15, pp 59-76
Bigoni, D., 2015, “Uncertainty Quantification with
Applications to Engineering Problems”
Andrieu, C., 2010, “Particle Markov chain Monte Carlo
methods”, Journal of Royal Statistical Society, Vol.72,
PP 269- 342
Nemeth, Ch., 2013, “Sequential Monte Carlo Methods for
State and Parameter Estimation in Abruptly Changing
Environments”, IEEE Transactions on Signal
Processing, Vol 62.
Kantas, N., 2009, “An Overview of Sequential Monte Carlo
Methods for Parameter Estimation in General State-
Space Models”, 15th IFAC Symposium on System
Identification Saint-Malo
Kailath, C. T. Chen, 2010 “Linear Systems”, Springer, PP
94-213.
Wüthrich, M.S., “A new perspective and extension of the
Gaussian Filter” . Int. J. Rob. Res., Vol 35, PP 1731-
1749, https://doi.org/10.1177/0278364916684019.
Grothe, O., 2018, “The Gibbs Sampler with Particle
Efficient Importance Sampling for State-Space
Models”, Institut für Ökonometrie und Statistik,
Universität Köln, Universitätsstr
http://sdk.rethinkrobotics.com/wiki/Arms
Yang C., 2016 “Advanced Technologies in Modern
Robotic Applications”, Springer Science, Chapter 2
Bejczy, A.K, “Robot Arm Dynamic and Control”, National
Aeronautics and Space Administration
Corke, P.I., “A computer tool for simulation and analysis:
the Robotics Toolbox for MATLAB”, CSIRO Division
of Manufacturing Technology
Wackerly, D.D., “ Mathematical Statistics with
Applications”, Thomson, 7th edition
Raiffa, H., 1961, “Applied Statistical Decision Theory.
Division of Research”, Graduate School of Business
Administration, Harvard University
Burkardt, J., “The Truncated Normal Distribution”,
Department of Scientic Computing,Florida State
University
Dahlin, J., “Getting Started with Particle Metropolis-
Hastings for Inference in Nonlinear Dynamical
Models”, University of Newcastle
Elvira, V.“Adapting the Number of Particles in Sequential
Monte Carlo Methods through an Online Scheme for
Convergence Assessment”, IEEE Transaction on
Signal Processing.