REFERENCES
Andriluka, M., Roth, S., and Schiele, B. (2008).
People-tracking-by-detection and people-detection-
by-tracking. In 2008 IEEE Conference on computer
vision and pattern recognition, pages 1–8. IEEE.
Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A.,
and Torr, P. H. (2016). Fully-convolutional siamese
networks for object tracking. In Computer Vision–
ECCV 2016 Workshops: Amsterdam, The Nether-
lands, October 8-10 and 15-16, 2016, Proceedings,
Part II 14, pages 850–865. Springer.
Breitenstein, M. D., Reichlin, F., Leibe, B., Koller-Meier,
E., and Van Gool, L. (2011). Online multiper-
son tracking-by-detection from a single, uncalibrated
camera. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 33(9):1820–1833.
Giancola, S., Zarzar, J., and Ghanem, B. (2019). Leveraging
shape completion for 3d siamese tracking. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 1359–1368.
He, C., Zhang, X., Miao, Z., and Sun, T. (2021). Intelli-
gent vehicle pedestrian tracking based on yolov3 and
dasiamrpn. In 2021 40th Chinese Control Conference
(CCC), pages 4181–4186. IEEE.
Held, D., Thrun, S., and Savarese, S. (2016). Learning to
track at 100 fps with deep regression networks. In
Computer Vision–ECCV 2016: 14th European Con-
ference, Amsterdam, The Netherlands, October 11–
14, 2016, Proceedings, Part I 14, pages 749–765.
Springer.
Hui, L., Wang, L., Tang, L., Lan, K., Xie, J., and Yang,
J. (2022). 3d siamese transformer network for sin-
gle object tracking on point clouds. In Computer
Vision–ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23–27, 2022, Proceedings, Part
II, pages 293–310. Springer.
Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., Kwon,
Y., Michael, K., and et. al (2022). ultralytics/yolov5:
v7.0 - YOLOv5 SOTA Realtime Instance Segmenta-
tion.
Koide, K. and Miura, J. (2016). Identification of a spe-
cific person using color, height, and gait features for
a person following robot. Robotics and Autonomous
Systems, 84:76–87.
Li, B., Yan, J., Wu, W., Zhu, Z., and Hu, X. (2018). High
performance visual tracking with siamese region pro-
posal network. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages
8971–8980.
Liu, Y., Jing, X.-Y., Nie, J., Gao, H., Liu, J., and Jiang,
G.-P. (2018). Context-aware three-dimensional mean-
shift with occlusion handling for robust object track-
ing in rgb-d videos. IEEE Transactions on Multime-
dia, 21(3):664–677.
Luo, W., Yang, B., and Urtasun, R. (2018). Fast and furi-
ous: Real time end-to-end 3d detection, tracking and
motion forecasting with a single convolutional net. In
Proceedings of the IEEE conference on Computer Vi-
sion and Pattern Recognition, pages 3569–3577.
Mu
˜
noz-Ba
˜
n
´
on, M.
´
A., Velasco-S
´
anchez, E., Candelas,
F. A., and Torres, F. (2022). Openstreetmap-based au-
tonomous navigation with lidar naive-valley-path ob-
stacle avoidance. IEEE Transactions on Intelligent
Transportation Systems, 23(12):24428–24438.
Ondra
ˇ
sovi
ˇ
c, M. and Tar
´
abek, P. (2021). Siamese visual
object tracking: A survey. IEEE Access, 9:110149–
110172.
P
´
aez-Ubieta, I., Velasco-S
´
anchez, E., Puente, S. T., and
Candelas, F. A. (2022). Detection and depth estima-
tion for domestic waste in outdoor environments by
sensors fusion.
Qi, H., Feng, C., Cao, Z., Zhao, F., and Xiao, Y. (2020).
P2b: Point-to-box network for 3d object tracking in
point clouds. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,
pages 6329–6338.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).
Satta, R. (2013). Appearance descriptors for person re-
identification: a comprehensive review. arXiv preprint
arXiv:1307.5748.
Song, S. and Xiao, J. (2013). Tracking revisited using
rgbd camera: Unified benchmark and baselines. In
Proceedings of the IEEE international conference on
computer vision, pages 233–240.
Tao, R., Gavves, E., and Smeulders, A. W. (2016). Siamese
instance search for tracking. In Proceedings of the
IEEE conference on computer vision and pattern
recognition, pages 1420–1429.
Yoshimi, T., Nishiyama, M., Sonoura, T., Nakamoto, H.,
Tokura, S., Sato, H., Ozaki, F., Matsuhira, N., and
Mizoguchi, H. (2006). Development of a person fol-
lowing robot with vision based target detection. In
2006 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 5286–5291. IEEE.
Zhang, Y., Wang, T., Liu, K., Zhang, B., and Chen, L.
(2021). Recent advances of single-object tracking
methods: A brief survey. Neurocomputing, 455:1–11.
Zheng, C., Yan, X., Zhang, H., Wang, B., Cheng, S., Cui,
S., and Li, Z. (2022). Beyond 3d siamese tracking: A
motion-centric paradigm for 3d single object tracking
in point clouds. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 8111–8120.
Zhu, Z., Wang, Q., Li, B., Wu, W., Yan, J., and Hu, W.
(2018). Distractor-aware siamese networks for visual
object tracking. In Proceedings of the European con-
ference on computer vision (ECCV), pages 101–117.
Robust Single Object Tracking and Following by Fusion Strategy
631