Marginal Probability for Mixed-Integer Black-Box
Optimization. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’22,
pages 639–647, New York, NY, USA. Association for
Computing Machinery.
Hansen, N. (2009). Benchmarking a BI-Population CMA-
ES on the BBOB-2009 Function Testbed. In Pro-
ceedings of the 11th Annual Conference Compan-
ion on Genetic and Evolutionary Computation Con-
ference: Late Breaking Papers, ACM Conferences,
pages 2389–2396, New York, NY, USA. Association
for Computing Machinery.
Hansen, N. (2011). A CMA-ES for Mixed-Integer Nonlin-
ear Optimization: Research Report. Technical Report
RR-7751, INRIA.
Hansen, N. (2016). The CMA Evolution Strategy: A Tuto-
rial. Technical report.
Hansen, N., Finck, S., Ros, R., and Auger, A. (2009).
Real-Parameter Black-Box Optimization Benchmark-
ing 2009: Noiseless Functions Definitions. Technical
Report RR-6829, INRIA.
Hansen, N. and Ostermeier, A. (1996). Adapting Arbitrary
Normal Mutation Distributions in Evolution Strate-
gies: The Covariance Matrix Adaptation. In Proceed-
ings of the IEEE International Conference on Evolu-
tionary Computation, pages 312–317.
Hansen, N. and Ostermeier, A. (2001). Completely De-
randomized Self-Adaptation in Evolution Strategies.
Evolutionary Computation, 9(2):159–195.
Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011). Se-
quential Model-Based Optimization for General Al-
gorithm Configuration. In Coello, C. A. C., editor,
Learning and Intelligent Optimization, volume 6683
of Lecture Notes in Computer Science, pages 507–
523. Springer Berlin Heidelberg, Berlin, Heidelberg.
Jastrebski, G. A. and Arnold, D. V. (2006). Improving
Evolution Strategies through Active Covariance Ma-
trix Adaptation. In IEEE International Conference on
Evolutionary Computation, pages 2814–2821.
Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp,
A., Deng, D., Benjamins, C., Ruhkopf, T., Sass,
R., and Hutter, F. (2022). SMAC3: A Versatile
Bayesian Optimization Package for Hyperparameter
Optimization. Journal of Machine Learning Research,
23(54):1–9.
Mann, H. B. and Whitney, D. R. (1947). On a test of
whether one of two random variables is stochastically
larger than the other. The annals of mathematical
statistics, pages 50–60.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay,
´
E. (2011). Scikit-learn: Machine Learning
in Python. Journal of Machine Learning Research,
12(85):2825–2830.
Piad-Morffis, A., Est
´
evez-Velarde, S., Boluf
´
e-R
¨
ohler, A.,
Montgomery, J., and Chen, S. (2015). Evolution
Strategies with Thresheld Convergence. In 2015 IEEE
Congress on Evolutionary Computation (CEC), pages
2097–2104.
Thomaser, A., de Nobel, J., Vermetten, D., Ye, F., B
¨
ack,
T., and Kononova, A. V. (2023a). When to be Dis-
crete: Analyzing Algorithm Performance on Dis-
cretized Continuous Problems. Technical report.
Thomaser, A., Vogt, M.-E., B
¨
ack, T., and Kononova, A. V.
(2023b). Optimizing CMA-ES with CMA-ES - Data
and Code. https://doi.org/10.5281/zenodo.8256601.
Thomaser, A., Vogt, M.-E., Kononova, A. V., and B
¨
ack, T.
(2023c). Transfer of Multi-objectively Tuned CMA-
ES Parameters to a Vehicle Dynamics Problem. In
Emmerich, M., Deutz, A., Wang, H., Kononova, A. V.,
Naujoks, B., Li, K., Miettinen, K., and Yevseyeva, I.,
editors, Evolutionary Multi-Criterion Optimization,
pages 546–560, Cham. Springer Nature Switzerland.
Tu
ˇ
sar, T., Brockhoff, D., and Hansen, N. (2019). Mixed-
Integer Benchmark Problems for Single- and Bi-
Objective Optimization. In Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO
’19, pages 718–726, New York, NY, USA. Associa-
tion for Computing Machinery.
van Rijn, S., Wang, H., van Leeuwen, M., and B
¨
ack, T.
(2016). Evolving the structure of Evolution Strate-
gies. In 2016 IEEE Symposium Series on Computa-
tional Intelligence (SSCI), pages 1–8.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett,
M., Wilson, J., Millman, K. J., Mayorov, N., Nel-
son, A. R. J., Jones, E., Kern, R., Larson, E., Carey,
C. J., Polat, VanderPlas, Jake, Laxalde, D., Perk-
told, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pe-
dregosa, F., van Mulbregt, P., and SciPy 1.0 Contrib-
utors (2020). SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python. Nature Methods,
17:261–272.
Wang, H., Emmerich, M., and B
¨
ack, T. (2014). Mirrored
Orthogonal Sampling with Pairwise Selection in Evo-
lution Strategies. In Proceedings of the 29th Annual
ACM Symposium on Applied Computing, SAC ’14,
pages 154–156, New York, NY, USA. Association for
Computing Machinery.
Wang, H., Emmerich, M., and B
¨
ack, T. (2019). Mirrored
Orthogonal Sampling for Covariance Matrix Adapta-
tion Evolution Strategies. Evolutionary Computation,
27(4):699–725.
Ye, F., Doerr, C., Wang, H., and B
¨
ack, T. (2022). Auto-
mated Configuration of Genetic Algorithms by Tun-
ing for Anytime Performance. IEEE Transactions on
Evolutionary Computation, page 1.
Zhao, M. and Li, J. (2018). Tuning the hyper-parameters
of CMA-ES with tree-structured Parzen estimators.
In 2018 Tenth International Conference on Advanced
Computational Intelligence (ICACI), pages 613–618.
Optimizing CMA-ES with CMA-ES
221