REFERENCES
Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T.
(2017). Enriching word vectors with subword infor-
mation. Transactions of the association for computa-
tional linguistics, 5:135–146.
Boselli, R., Cesarini, M., Mercorio, F., and Mezzanzan-
ica, M. (2014). A policy-based cleansing and in-
tegration framework for labour and healthcare data.
In Holzinger, A. and Jurisica, I., editors, Interactive
Knowledge Discovery and Data Mining in Biomedical
Informatics - State-of-the-Art and Future Challenges,
volume 8401 of Lecture Notes in Computer Science,
pages 141–168. Springer.
Boudin, F. (2018). Unsupervised keyphrase extraction with
multipartite graphs. arXiv preprint arXiv:1803.08721.
Campos, R., Mangaravite, V., Pasquali, A., Jorge, A. M.,
Nunes, C., and Jatowt, A. (2018). Yake! collection-
independent automatic keyword extractor. In Eu-
ropean Conference on Information Retrieval, pages
806–810. Springer.
Chi, L. and Hu, L. (2021). Iske: An unsupervised auto-
matic keyphrase extraction approach using the iterated
sentences based on graph method. Knowledge-Based
Systems, 223:107014.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.
Giabelli, A., Malandri, L., Mercorio, F., Mezzanzanica, M.,
and Nobani, N. (2022). Embeddings evaluation us-
ing a novel measure of semantic similarity. Cognitive
Computation, 14(2):749–763.
Giabelli, A., Malandri, L., Mercorio, F., Mezzanzanica, M.,
and Seveso, A. (2020). NEO: A tool for taxonomy
enrichment with new emerging occupations. In Pan,
J. Z., Tamma, V. A. M., d’Amato, C., Janowicz, K.,
Fu, B., Polleres, A., Seneviratne, O., and Kagal, L.,
editors, The Semantic Web - ISWC 2020 - 19th Inter-
national Semantic Web Conference, Athens, Greece,
November 2-6, 2020, Proceedings, Part II, volume
12507 of Lecture Notes in Computer Science, pages
568–584. Springer.
Gollapalli, S. D. and Caragea, C. (2014). Extracting
keyphrases from research papers using citation net-
works. In Twenty-eighth AAAI conference on artificial
intelligence.
Hulth, A. (2003). Improved automatic keyword extraction
given more linguistic knowledge. In Proceedings of
the 2003 conference on Empirical methods in natural
language processing, pages 216–223.
Kathait, S. S., Tiwari, S., Varshney, A., and Sharma, A.
(2017). Unsupervised key-phrase extraction using
noun phrases. International Journal of Computer Ap-
plications, 162(1):1–5.
Kim, S. N., Medelyan, O., Kan, M.-Y., and Baldwin, T.
(2010). Semeval-2010 task 5: Automatic keyphrase
extraction from scientific articles. In Proceedings of
the 5th International Workshop on Semantic Evalua-
tion, pages 21–26.
Knittel, J., Koch, S., and Ertl, T. (2021). Elske: Effi-
cient large-scale keyphrase extraction. arXiv preprint
arXiv:2102.05700.
Liu, Z., Huang, W., Zheng, Y., and Sun, M. (2010). Au-
tomatic keyphrase extraction via topic decomposition.
In Proceedings of the 2010 conference on empirical
methods in natural language processing, pages 366–
376.
Merrouni, Z. A., Frikh, B., and Ouhbi, B. (2020). Auto-
matic keyphrase extraction: a survey and trends. Jour-
nal of Intelligent Information Systems, 54(2):391–
424.
Mezzanzanica, M., Boselli, R., Cesarini, M., and Mercorio,
F. (2012). Data quality sensitivity analysis on aggre-
gate indicators. In Helfert, M., Francalanci, C., and
Filipe, J., editors, DATA 2012 - Proceedings of the
International Conference on Data Technologies and
Applications, Rome, Italy, 25-27 July, 2012, pages 97–
108. SciTePress.
Mezzanzanica, M., Boselli, R., Cesarini, M., and Mercorio,
F. (2015). A model-based approach for developing
data cleansing solutions. Journal of Data and Infor-
mation Quality (JDIQ), 5(4):1–28.
Nguyen, T. D. and Kan, M.-Y. (2007). Keyphrase extraction
in scientific publications. In International conference
on Asian digital libraries, pages 317–326. Springer.
KRAKEN: A Novel Semantic-Based Approach for Keyphrases Extraction
297