Working in finite Pawlak approximation space, the
uncertain nature of bipolarity approximating the pos-
itive and negative reference sets with rough sets has
also been modeled. The proposed methods can be ex-
tended to any family of mutual disjoint sets.
ACKNOWLEDGEMENTS
The author would like to thank the anonymous
referees for their useful comments and suggestions.
REFERENCES
Alefeld, G. and Mayer, G. (2000). Interval analy-
sis: theory and applications. Journal of Compu-
tational and Applied Mathematics, 121(1):421–
464.
Banerjee, M. and Chakraborty, M. (2004). Alge-
bras from rough sets. In Pal, S., Polkowski, L.,
and Skowron, A., editors, Rough-Neuro Com-
puting: Techniques for Computing with Words,
pages 157–184. Springer.
Bonikowski, Z. (1992). A certain conception of the
calculus of rough sets. Notre Dame Journal of
Formal Logic, 33(3):412–421.
Cacioppo, J. T., Gardner, W. L., and Berntson, G. G.
(1997). Beyond bipolar conceptualizations and
measures: The case of attitudes and evaluative
space. Personality and Social Psychology Re-
view, 1(1):3–25.
Campagner, A. and Ciucci, D. (2017). Measuring
uncertainty in orthopairs. In Antonucci, A.,
Cholvy, L., and Papini, O., editors, Symbolic
and Quantitative Approaches to Reasoning with
Uncertainty - 14th European Conference, EC-
SQARU 2017, Lugano, Switzerland, July 10-
14, 2017, Proceedings, volume 10369 of LNCS,
pages 423–432. Springer.
Ciucci, D. (2011). Orthopairs: A simple and widely
used way to model uncertainty. Fundam. Inf.,
108(3-4):287–304.
Dubois, D. and Prade, H. (2006). Bipolar represen-
tations in reasoning, knowledge extraction and
decision processes. In Greco, S. and et al., edi-
tors, Proceedings of RSCTC 2006, volume 4259
of LNCS, pages 15–26. Springer.
Dubois, D. and Prade, H. (2008). An introduction to
bipolar representations of information and pref-
erence. International Journal of Intelligent Sys-
tems, 23(8):866–877.
Dubois, D. and Prade, H. (2009). An overview of
the asymmetric bipolar representation of positive
and negative information in possibility theory.
Fuzzy Sets and Systems, 160(10):1355–1366.
Facchinetti, G., Ghiselli Ricci, R., and Muzzioli,
S. (1998). Note on fuzzy triangular numbers.
13:613 – 622.
Gehrke, M. and Walker, E. (1992). On the structure
of rough sets. Bulletin of Polish Academy of Sci-
ences. Mathematics, 40:235–245.
Hickey, T., Ju, Q., and Van Emden, M. H. (2001). In-
terval arithmetic: From principles to implemen-
tation. Journal of the ACM, 48(5):1038–1068.
Ladenson, P. and Kim, M. (2011). Thyroid. In Gold-
man, L. and Schafer, A. I., editors, Goldman’s
Cecil Medicine, page Chap. 233, Philadelphia,
Pa. Saunders Elsevier.
Marek, V. W. and Truszczy
´
nski, M. (1999). Contribu-
tions to the theory of rough sets. Fundam. Inf.,
39(4):389–409.
Moore, R. E., Kearfott, R. B., and Cloud, M. J.
(2009). Introduction to Interval Analysis. So-
ciety for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, USA.
Pagliani, P. (1998). Rough set theory and logic-
algebraic structures. In Orłowska, E., editor, In-
complete Information: Rough Set Analysis, vol-
ume 13 of Studies in Fuzziness and Soft Comput-
ing, pages 109–190, Heidelberg. Physica-Verlag.
Pawlak, Z. (1981). Information systems theoreti-
cal foundations. Information Systems, 6(3):205–
218.
Pawlak, Z. (1982). Rough sets. International
Journal of Computer and Information Sciences,
11(5):341–356.
Pawlak, Z. (1991). Rough Sets: Theoretical Aspects
of Reasoning about Data. Kluwer Academic
Publishers, Dordrecht.
Pawlak, Z. and Skowron, A. (2007). Rudiments of
rough sets. Information Sciences, 177(1):3–27.
Sengupta, A. and Pal, T. K. (2000). On comparing
interval numbers. European Journal of Opera-
tional Research, 127(1):28–43.
Wang, Y.-M., Yang, J.-B., and Xu, D.-L. (2005). A
preference aggregation method through the esti-
mation of utility intervals. Comput. Oper. Res.,
32(8):2027–2049.
Wong, S. K. M., Wang, L., and Yao, Y. Y. (2013).
Interval structure: A framework for representing
uncertain information. CoRR, abs/1303.5437.
Xu, Z. and Chen, J. (2008). Some models for deriving
the priority weights from interval fuzzy prefer-
FCTA 2023 - 15th International Conference on Fuzzy Computation Theory and Applications
346