formers for language understanding. arXiv preprint
arXiv:1810.04805.
Diefenbach, D., Both, A., Singh, K., and Maret, P. (2018).
Towards a question answering system over the seman-
tic web (2018). arXiv preprint arXiv:1803.00832.
Diefenbach, D., Gim
´
enez-Garc
´
ıa, J., Both, A., Singh, K.,
and Maret, P. (2020). Qanswer kg: designing a
portable question answering system over rdf data. In
European Semantic Web Conference, pages 429–445.
Springer.
Dubey, M., Banerjee, D., Abdelkawi, A., and Lehmann, J.
(2019). Lc-quad 2.0: A large dataset for complex
question answering over wikidata and dbpedia. In
International semantic web conference, pages 69–78.
Springer.
Eggert, J., Deigm
¨
oller, J., Fischer, L., and Richter, A.
(2019). Memory nets: Knowledge representation
for intelligent agent operations in real world. In In-
ternational Joint Conference on Knowledge Discov-
ery, Knowledge Engineering, and Knowledge Man-
agement, pages 260–282. Springer.
Eggert, J., Deigm
¨
oller, J., Fischer, L., and Richter, A.
(2020). Action representation for intelligent agents
using memory nets. In Communications in Computer
and Information Science, volume 1297. Springer.
Fischer, L., Hasler, S., Deigm
¨
oller, J., Schn
¨
urer, T., Red-
ert, M., Pluntke, U., Nagel, K., Senzel, C., Ploen-
nigs, J., Richter, A., et al. (2018). Which tool to
use? grounded reasoning in everyday environments
with assistant robots. In CogRob@ KR, pages 3–10.
Honnibal, M. and Montani, I. (2017). spaCy 2: Natural lan-
guage understanding with Bloom embeddings, con-
volutional neural networks and incremental parsing.
https://sentometrics-research.com/publication/72.
Accessed: 2022-12-16.
Losing, V., Fischer, L., and Deigm
¨
oller, J. (2021). Extrac-
tion of common-sense relations from procedural task
instructions using bert. In Proceedings of the 11th
Global Wordnet Conference, pages 81–90.
Lynch, C. and Sermanet, P. (2021). Translating natural
language instructions to computer programs for robot
manipulation. In Robotics Science and Systems.
Miller, G. A. (1998). WordNet: An electronic lexical
database. MIT press.
M
¨
oller, T., Pietsch, M., and Rusic, M. (2022). Met-
rics to evaluate a question answering system.
https://www.deepset.ai/blog/metrics-to-evaluate-a-
question-answering-system. Accessed: 2022-12-16.
M
¨
uhlig, M., Fischer, L., Hasler, S., and Deigm
¨
oller, J.
(2020). A knowledge-based multi-entity and cooper-
ative system architecture. In 2020 IEEE International
Conference on Human-Machine Systems (ICHMS),
pages 1–6. IEEE.
Paulius, D. and Sun, Y. (2018). A survey of knowledge rep-
resentation in service robotics. In Robotics and Au-
tonomous Systems.
Puig, X., Ra, K., Boben, M., Li, J., Wang, T., Fidler, S.,
and Torralba, A. (2018). Virtualhome: Simulating
household activities via programs. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8494–8502.
Sap, M., Le Bras, R., Allaway, E., Bhagavatula, C., Lourie,
N., Rashkin, H., Roof, B., Smith, N. A., and Choi, Y.
(2019). Atomic: An atlas of machine commonsense
for if-then reasoning. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, pages
3027–3035.
Sendhoff, B. and Wersing, H. (2020). Cooperative intelli-
gence – a humane perspective. In 2020 IEEE Confer-
ence on Human-Machine Systems.
Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W.,
Mottaghi, R., Zettlemoyer, L., and Fox, D. (2020).
Alfred: A benchmark for interpreting grounded in-
structions for everyday tasks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 10740–10749.
Speer, R., Chin, J., and Havasi, C. (2017). Conceptnet 5.5:
An open multilingual graph of general knowledge. In
Thirty-first AAAI conference on artificial intelligence.
Srivastava, S., Li, C., Lingelbach, M., Mart
´
ın-Mart
´
ın, R.,
Xia, F., Vainio, K. E., Lian, Z., Gokmen, C., Buch,
S., Liu, K., et al. (2022). Behavior: Benchmark for
everyday household activities in virtual, interactive,
and ecological environments. In Conference on Robot
Learning, pages 477–490. PMLR.
Storks, S., Gao, Q., and Chai, J. Y. (2019). Commonsense
reasoning for natural language understanding: A sur-
vey of benchmarks, resources, and approaches. arXiv
preprint arXiv:1904.01172, pages 1–60.
Tandon, N., De Melo, G., and Weikum, G. (2017). We-
bchild 2.0: Fine-grained commonsense knowledge
distillation. In Proceedings of ACL 2017, System
Demonstrations, pages 115–120.
Thosar, M., Zug, S., Skaria, A. M., and Jain, A. (2018).
A review of knowledge bases for service robots in
household environments. In 6th International Work-
shop on Artificial Intelligence and Cognition.
Vassiliades, A., Bassiliades, N., and Patkos, T. (2021).
Commonsense reasoning with argumentation for cog-
nitive robotics. In RuleML+ RR (Supplement).
Venkatesh, S. G., Upadrashta, R., and Amrutur, B. (2021).
Translating natural language instructions to computer
programs for robot manipulation. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 1919–1926. IEEE.
Zafar, H., Napolitano, G., and Lehmann, J. (2018). Formal
query generation for question answering over knowl-
edge bases. In European semantic web conference,
pages 714–728. Springer.
Memory Net: Generalizable Common-Sense Reasoning over Real-World Actions and Objects
189