Mental Health Corpus from two South Asian Countries.
http://arxiv.org/abs/2208.08486
Cao, Y., Li, S., Liu, Y., Yan, Z., Dai, Y., Yu, P. S., & Sun,
L. (2023). A Comprehensive Survey of AI-Generated
Content (AIGC): A History of Generative AI from GAN
to ChatGPT. http://arxiv.org/abs/2303.04226
Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. de O.,
Kaplan, J., Edwards, H., Burda, Y., Joseph, N.,
Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov,
M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray,
S., … Zaremba, W. (2021). Evaluating Large
Language Models Trained on Code. http://arxiv.
org/abs/2107.03374
Day, M. Y., & Shaw, S. R. (2021). AI Customer Service
System with Pre-trained Language and Response
Ranking Models for University Admissions.
Proceedings - 2021 IEEE 22nd International
Conference on Information Reuse and Integration for
Data Science, IRI 2021. https://doi.org/10.1109/
IRI51335.2021.00062
Gala, N., & Brun, C. (2012). Propagation de polarités dans
des familles de mots : impact de la morphologie dans la
construction d’un lexique pour l’analyse d’opinions
(Vol. 2). TALN. http://polarimots.lif.univ-mrs.fr.
Hutto, C. J., & Gilbert, E. (2014). VADER: A Parsimonious
Rule-based Model for Sentiment Analysis of Social
Media Text. http://sentic.net/
Jacob Cohen. (1960). A Coefficient of Agreement for
Nominal Scales. Educational and Psychological
Measurement, 37–46.
Joseph L. Fleiss. (1971). Measuring nominal scale
agreement among many raters. Psychological Bulletin,
76(5), 378–382.
Kertkeidkachorn, N., & Shirai, K. (n.d.). Sentiment
Analysis using the Relationship between Users and
Products. https://github.com/knatthawut/gnnlm
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V.
(2019). RoBERTa: A Robustly Optimized BERT
Pretraining Approach. http://arxiv.org/abs/1907.11692
Mohammad, S. M., & Turney, P. D. (2010). Emotions
Evoked by Common Words and Phrases: Using
Mechanical Turk to Create an Emotion Lexicon.
http://www.wjh.harvard.edu/
Mohammad, S. M., & Turney, P. D. (2013). Crowdsourcing
a Word-Emotion Association Lexicon.
http://arxiv.org/abs/1308.6297
OpenAI. (2023). ChatGPT (Mar 14 version) [Large
language model]. Https://Chat.Openai.Com/Chat.
Pérez, J., Díaz, J., Garcia-Martin, J., & Tabuenca, B.
(2020). Systematic literature reviews in software
engineering—enhancement of the study selection
process using Cohen’s Kappa statistic. Journal of
Systems and Software, 168. https://doi.org/10.
1016/j.jss.2020.110657
Pham, H. H., Nguyen, H. Q., Nguyen, H. T., Le, L. T., &
Lam, K. (2023). Evaluating the impact of an
explainable machine learning system on the
interobserver agreement in chest radiograph
interpretation. http://arxiv.org/abs/2304.01220
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., &
Sutskever, I. (2019). Language Models are
Unsupervised Multitask Learners. https://github.com/
codelucas/newspaper
Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C.,
Radford, A., Chen, M., & Sutskever, I. (2021). Zero-
Shot Text-to-Image Generation. http://arxiv.org/
abs/2102.12092
Robert Plutchik. (1980). A general psychoevolutionary
theory of emotion. Plutchik, R., Kellerman, H. (Eds.),
Theories of Emotion. Academic Press, 3–33.
Schuff, H., Barnes, J., Mohme, J., Padó, S., & Klinger, R.
(2017). Annotation, Modelling and Analysis of Fine-
Grained Emotions on a Stance and Sentiment Detection
Corpus. http://www.ims.uni-stuttgart.de/data/
Segura Navarrete, A., Martinez-Araneda, C., Vidal-Castro,
C., & Rubio-Manzano, C. (2021). A novel approach to
the creation of a labelling lexicon for improving
emotion analysis in text. Electronic Library, 39(1),
118–136. https://doi.org/10.1108/EL-04-2020-0110
Staiano, J., & Guerini, M. (2014). DepecheMood: a Lexicon
for Emotion Analysis from Crowd-Annotated News.
Association for Computational Linguistics.
http://nie.mn/QuD17Z
Strapparava, C., & Valitutti, A. (2004). WordNet-Affect: an
Affective Extension of WordNet. https://www.
researchgate.net/publication/254746105
Tocoglu, M. A., & Alpkocak, A. (2018). TREMO: A
dataset for emotion analysis in Turkish. Journal of
Information Science, 44(6), 848–860.
Toçoglu, M. A., & Alpkoçak, A. (2019). Lexicon-based
emotion analysis in Turkish. Turkish Journal of
Electrical Engineering and Computer Sciences, 27(2),
1213–1227. https://doi.org/10.3906/elk-1807-41
Wilbur, W. J., Rzhetsky, A., & Shatkay, H. (2006). New
directions in biomedical text annotation: Definitions,
guidelines and corpus construction. BMC
Bioinformatics, 7. https://doi.org/10.1186/1471-2105-
7-356.