REFERENCES
Aminzare, Z. and Sontag, E. (2014). Contraction methods
for nonlinear systems: A brief introduction and some
open problems. In Proceedings of the 53rd IEEE Con-
ference on Decision and Control, pages 3835–3847.
Aylward, E., Parrilo, P., and Slotine, J.-J. (2008). Stability
and robustness analysis of nonlinear systems via con-
traction metrics and SOS programming. Automatica,
44(8):2163–2170.
Bauer, F., Rutishauser, H., and Stiefel, E. (1963). New as-
pects in numerical quadrature. In Proceedings of Sym-
posia in Applied Mathematics: Experimental Arith-
metic, Hight Speed Comoputing and Mathematics,
volume 15, pages 199–218. AMS.
Borg, G. (1960). A condition for the existence of orbitally
stable solutions of dynamical systems. Kungl. Tekn.
H
¨
ogsk. Handl. 153.
Demidovi
ˇ
c, B. (1961). On the dissipativity of a certain
non-linear system of differential equations. I. Vestnik
Moskov. Univ. Ser. I Mat. Meh., 1961(6):19–27.
Deuflhard, P. and Hohmann, A. (2008). Numerische Math-
ematik 2. de Gruyter, 4th edition.
Forni, F. and Sepulchre, R. (2014). A differential Lyapunov
framework for Contraction Analysis. IEEE Transac-
tions on Automatic Control, 59(3):614–628.
Giesl, P. (2015). Converse theorems on contraction metrics
for an equilibrium. J. Math. Anal. Appl., (424):1380–
1403.
Giesl, P. (2019). Computation of a contraction metric for
a periodic orbit using meshfree collocation. SIAM J.
Appl. Dyn. Syst., 18(3):1536–1564.
Giesl, P. and Hafstein, S. (2013). Construction of a CPA
contraction metric for periodic orbits using semidefi-
nite optimization. Nonlinear Anal., 86:114–134.
Giesl, P., Hafstein, S., Haraldsdottir, M., Thorsteinsson, D.,
and Kawan, C. (2023a). Subgradient algorithm for
computing contraction metrics for equilibria. J. Com-
put. Dynamics, 10(2):281–303.
Giesl, P., Hafstein, S., and Kawan, C. (2023b). Review on
contraction analysis and computation of contraction
metrics. J. Comput. Dynamics, 10(1):1–47.
Giesl, P., Hafstein, S., and Mehrabinezhad, I. (2021a).
Computation and verification of contraction metrics
for exponentially stable equilibria. J. Comput. Appl.
Math., 390:Paper No. 113332.
Giesl, P., Hafstein, S., and Mehrabinezhad, I. (2021b).
Computation and verification of contraction metrics
for periodic orbits. J. Math. Anal. Appl., 503(2):Pa-
per No. 125309, 32.
Giesl, P., Hafstein, S., and Mehrabinezhad, I. (2023c). Con-
traction metric computation using numerical integra-
tion and quadrature. Submitted.
Giesl, P., Hafstein, S., and Mehrabinezhad, I. (2023d). Pos-
itively invariant sets for ODEs and numerical integra-
tion. In Proceedings of the 20th International Con-
ference on Informatics in Control, Automation and
Robotics (ICINCO), page (submitted).
Giesl, P. and Wendland, H. (2019). Construction of a con-
traction metric by meshless collocation. Discrete Con-
tin. Dyn. Syst. Ser. B, 24(8):3843–3863.
Hafstein, S. (2019). Numerical ODE solvers and integration
methods in the computation of CPA Lyapunov func-
tions. In 18th European Control Conference (ECC),
pages 1136–1141. IEEE.
Hartman, P. (1961). On stability in the large for systems
of ordinary differential equations. Canadian J. Math.,
13:480–492.
Hartman, P. (1964). Ordinary Differential Equations. Wi-
ley, New York.
Krasovski
˘
i, N. N. (1963). Problems of the Theory of Stabil-
ity of Motion. Mir, Moskow, 1959. English translation
by Stanford University Press.
Lewis, D. (1951). Differential equations referred to a vari-
able metric. Amer. J. Math., 73:48–58.
Lewis, D. C. (1949). Metric properties of differential equa-
tions. Amer. J. Math., 71:294–312.
Lohmiller, W. and Slotine, J.-J. (1998). On Contrac-
tion Analysis for Non-linear Systems. Automatica,
34:683–696.
Sauer, T. (2012). Numerical Analysis. Pearson, 2nd edition.
Simpson-Porco, J. and Bullo, F. (2014). Contraction the-
ory on Riemannian manifolds. Systems Control Lett.,
65:74–80.
Walter, W. (1998). Ordinary Differential Equation.
Springer.
Contraction Metrics by Numerical Integration and Quadrature: Uniform Error Estimate
205