ACKNOWLEDGMENT
We acknowledge Andrea Centurelli for the help pro-
vided during the development of the proposed ap-
proach.
This work was partially supported by the Euro-
pean Union’s Horizon 2020 FET-Open program under
grant agreement no. 863212 (PROBOSCIS project).
REFERENCES
Alessi, C., Falotico, E., and Lucantonio, A. (2023). Abla-
tion study of a dynamic model for a 3d-printed pneu-
matic soft robotic arm. IEEE Access, 11:37840–
37853.
Bianchi, D., Antonelli, M., Laschi, C., and Falotico, E.
(2022). Open-loop control of a soft arm in throwing
tasks. In 19th International Conference on Informat-
ics in Control, Automation and Robotics, pages 138–
145. ISSN: 2184-2809.
Bianchi, D., Antonelli, M. G., Laschi, C., Sabatini, A. M.,
and Falotico, E. (2023). SofToss: Learning to Throw
Objects with a soft robot. IEEE Robotics and Automa-
tion Magazine.
Braun, D. J., Howard, M., and Vijayakumar, S. (2012).
Exploiting variable stiffness in explosive movement
tasks. Robotics: Science and Systems VII, 7:25–32.
B
¨
uchler, D., Calandra, R., and Peters, J. (2022). Learning to
Control Highly Accelerated Ballistic Movements on
Muscular Robots. Robotics and Autonomous Systems,
page 104230.
Centurelli, A., Arleo, L., Rizzo, A., Tolu, S., Laschi, C., and
Falotico, E. (2022). Closed-loop Dynamic Control of
a Soft Manipulator using Deep Reinforcement Learn-
ing. IEEE Robotics and Automation Letters, pages 1–
1. Conference Name: IEEE Robotics and Automation
Letters.
Centurelli, A., Rizzo, A., Tolu, S., and Falotico, E. (2021).
Open-loop Model-free Dynamic Control of a Soft Ma-
nipulator for Tracking Tasks. In 2021 20th Inter-
national Conference on Advanced Robotics (ICAR),
pages 128–133.
Fang, Z., Hou, Y., and Li, J. (2021). A pick-and-throw
method for enhancing robotic sorting ability via deep
reinforcement learning. In 2021 36th Youth Academic
Annual Conference of Chinese Association of Automa-
tion (YAC), pages 479–484.
Fischer, O., Toshimitsu, Y., Kazemipour, A., and
Katzschmann, R. K. (2022). Dynamic Task Space
Control Enables Soft Manipulators to Perform Real-
World Tasks. Advanced Intelligent Systems, page
2200024.
Gazzola, M., Dudte, L. H., McCormick, A. G., and Ma-
hadevan, L. (2018). Forward and inverse problems in
the mechanics of soft filaments. Royal Society Open
Science, 5(6):171628. Publisher: Royal Society.
George Thuruthel, T., Falotico, E., Manti, M., Pratesi,
A., Cianchetti, M., and Laschi, C. (2017). Learning
closed loop kinematic controllers for continuum ma-
nipulators in unstructured environments. Soft robotics,
4(3):285–296.
Giorelli, M., Renda, F., Ferri, G., and Laschi, C. (2013). A
feed-forward neural network learning the inverse ki-
netics of a soft cable-driven manipulator moving in
three-dimensional space. In 2013 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems,
pages 5033–5039. ISSN: 2153-0866.
Hawkes, E. W., Blumenschein, L. H., Greer, J. D., and
Okamura, A. M. (2017). A soft robot that navigates
its environment through growth. Science Robotics,
2(8):eaan3028. Publisher: American Association for
the Advancement of Science.
Holland, D. P., Abah, C., Velasco-Enriquez, M., Herman,
M., Bennett, G. J., Vela, E. A., and Walsh, C. J.
(2017). The Soft Robotics Toolkit: Strategies for
Overcoming Obstacles to the Wide Dissemination of
Soft-Robotic Hardware. IEEE Robotics & Automa-
tion Magazine, 24(1):57–64. Conference Name: IEEE
Robotics & Automation Magazine.
Ilievski, F., Mazzeo, A. D., Shepherd, R. F., Chen, X.,
and Whitesides, G. M. (2011). Soft Robotics for
Chemists. Angewandte Chemie International Edition,
50(8):1890–1895.
Katzschmann, R. K., DelPreto, J., MacCurdy, R., and
Rus, D. (2018). Exploration of underwater life with
an acoustically controlled soft robotic fish. Science
Robotics, 3(16):eaar3449. Publisher: American Asso-
ciation for the Advancement of Science.
Laschi, C., Mazzolai, B., and Cianchetti, M. (2016).
Soft robotics: Technologies and systems pushing
the boundaries of robot abilities. Science Robotics,
1(1):eaah3690. Publisher: American Association for
the Advancement of Science.
Laschi, C., Thuruthel, T. G., Lida, F., Merzouki, R., and
Falotico, E. (2023). Learning-based control strategies
for soft robots: Theory, achievements, and future chal-
lenges. IEEE Control Systems, 43(3):100 – 113.
Li, S., Vogt, D. M., Rus, D., and Wood, R. J. (2017).
Fluid-driven origami-inspired artificial muscles. Pro-
ceedings of the National Academy of Sciences,
114(50):13132–13137. Publisher: Proceedings of the
National Academy of Sciences.
Manti, M., Pratesi, A., Falotico, E., Cianchetti, M., and
Laschi, C. (2016). Soft assistive robot for personal
care of elderly people. In 2016 6th IEEE International
Conference on Biomedical Robotics and Biomecha-
tronics (BioRob), pages 833–838. ISSN: 2155-1782.
Piqu
´
e, F., Kalidindi, H. T., Fruzzetti, L., Laschi, C., Men-
ciassi, A., and Falotico, E. (2022). Controlling
Soft Robotic Arms Using Continual Learning. IEEE
Robotics and Automation Letters, 7(2):5469–5476.
Conference Name: IEEE Robotics and Automation
Letters.
Polygerinos, P., Correll, N., Morin, S. A., Mosadegh, B.,
Onal, C. D., Petersen, K., Cianchetti, M., Tolley,
M. T., and Shepherd, R. F. (2017). Soft Robotics:
Review of Fluid-Driven Intrinsically Soft Devices;
Manufacturing, Sensing, Control, and Applications
Learning-Based Inverse Dynamic Controller for Throwing Tasks with a Soft Robotic Arm
431