Avci, O., Abdeljaber, O., Kiranyaz, S., Hussein, M., &
Inman, D. J. (2018). Wireless and real-time structural
damage detection: A novel decentralized method for
wireless sensor networks. Journal of Sound and
Vibration, 424, 158–172. https://doi.org/10.1016/
j.jsv.2018.03.008
Couture, Z. (2013). Structural Health Monitoring
(dissertation).
Crémona, C. (2016). Big Data and Structural Health
Monitoring. IABSE Congress, Stockholm 2016:
Challenges in Design and Construction of an
Innovative and Sustainable Built Environment.
https://doi.org/10.2749/stockholm.2016.1793
De La Torre, R. Dll., Pasobillo, G. A., Rebueno, M. F.,
Sunga, D. P., Esguerra, B. J., & Concepcion, R. (2020).
Vibration-based structural health monitoring system for
bridges using ADXL345 accelerometer with MATLAB
standalone application. 2020 IEEE 12th International
Conference on Humanoid, Nanotechnology,
Information Technology, Communication and Control,
Environment, and Management (HNICEM).
https://doi.org/10.1109/hnicem51456.2020.9400068
Doebling, S. W., Farrar, C. R., Prime, M. B., & Shevitz, D.
W. (1996). Damage Identification and Health
Monitoring of Structural and Mechanical Systems from
Changes in Their Vibration Characteristics: A
Literature Review. https://doi.org/10.2172/249299
Eftekhar Azam, S., Rageh, A., & Linzell, D. (2018).
Damage detection in structural systems utilizing
artificial neural networks and proper orthogonal
decomposition. Structural Control and Health
Monitoring, 26(2). https://doi.org/10.1002/stc.2288
Goyal, D., & Pabla, B. S. (2015). The vibration monitoring
methods and signal processing techniques for Structural
Health Monitoring: A Review. Archives of
Computational Methods in Engineering, 23(4), 585–
594. https://doi.org/10.1007/s11831-015-9145-0
Hernandez, E., Roohi, M., & Rosowsky, D. (2018).
Estimation of elementbyelement demandto
capacity ratios in instrumented SMRF buildings using
measured seismic response. Earthquake Engineering &
Structural Dynamics, 47(12), 2561–2578.
https://doi.org/10.1002/eqe.3099
Ibrahim, A., Eltawil, A., Na, Y., & El-Tawil, S. (2020). A
machine learning approach for structural health
monitoring using noisy data sets. IEEE Transactions on
Automation Science and Engineering, 17(2), 900–908.
https://doi.org/10.1109/tase.2019.2950958
Keller, J. M., Liu, D., & Fogel, D. B. (2016). Fundamentals
of Computational Intelligence: Neural Networks, Fuzzy
Systems, and evolutionary computation. Wiley.
Khemapech, I., Sansrimahachai, W., & Toahchoodee, M.
(2016). A real-time health monitoring and warning
system for bridge structures. 2016 IEEE Region 10
Conference (TENCON). https://doi.org/10.1109/ten
con.2016.7848598
Kiranyaz, S., Avci, O., Abdeljaber, O., Ince, T., Gabbouj,
M., & Inman, D. J. (2021). 1D convolutional neural
networks and applications: A survey. Mechanical
Systems and Signal Processing, 151, 107398.
https://doi.org/10.1016/j.ymssp.2020.107398
Li, H.-N., Ren, L., Jia, Z.-G., Yi, T.-H., & Li, D.-S. (2015).
State-of-the-art in structural health monitoring of large
and complex civil infrastructures. Journal of Civil
Structural Health Monitoring, 6(1), 3–16.
https://doi.org/10.1007/s13349-015-0108-9
Liu, J., McDaid, L. J., Harkin, J., Wade, J. J., Karim, S.,
Johnson, A. P., Millard, A. G., Halliday, D. M., Tyrrell,
A. M., & Timmis, J. (2017). Self-repairing learning rule
for spiking astrocyte-neuron networks. Neural
Information Processing, 384–392. https://doi.org/10.10
07/978-3-319-70136-3_41
Moaveni, B., He, X., Conte, J. P., & Restrepo, J. I. (2010).
Damage identification study of a seven-story full-scale
building slice tested on the UCSD-Nees Shake Table.
Structural Safety, 32(5), 347–356. https://doi.org/10.10
16/j.strusafe.2010.03.006
Moaveni, B., He, X., Conte, J. P., Restrepo, J. I., &
Panagiotou, M. (2011). System identification study of a
7-story full-scale building slice tested on the UCSD-
Nees Shake Table. Journal of Structural Engineering,
137(6), 705–717. https://doi.org/10.1061/(asce)st.19
43-541x.0000300
Notley, S., & Magdon-Ismail, M. (2018). Examining the
Use of Neural Networks for Feature Extraction: A
Comparative Analysis Using Deep Learning, Support
Vector Machines and K-Nearest Neighbor Classifier.
Nuhu, B. K., Aliyu, I., Adegboye, M. A., Ryu, J. K.,
Olaniyi, O. M., & Lim, C. G. (2020). Distributed
network-based Structural Health Monitoring Expert
System. Building Research & Information, 49(1), 144–
159. https://doi.org/10.1080/09613218.2020.1854083
Overbey, L. A. (2008). Time series analysis and feature
extraction techniques for Structural Health Monitoring
Applications (dissertation).
Pang, L., Liu, J., Harkin, J., Martin, G., McElholm, M.,
Javed, A., & McDaid, L. (2020). Case study-spiking
neural network hardware system for Structural Health
Monitoring. Sensors, 20(18), 5126. https://doi.org/
10.3390/s20185126
Paugam-Moisy, H., & Bohte, S. (2012). Computing with
spiking neuron networks. Handbook of Natural
Computing, 1–47.
Semperlotti, F. (2009). Structural damage detection via
nonlinear system identification and structural intensity
methods (dissertation).
Song, L., Li, S., Wang, J., Wang, Z., & Zhao, G. (2020).
Research progress on structural damage identification
in civil engineering. 2020 International Conference on
Intelligent Transportation, Big Data & Smart City
(ICITBS)
. https://doi.org/10.1109/icitbs49701.2020.00
076
Toivola, J., & Hollmén, J. (2009). Feature extraction and
selection from vibration measurements for structural
health monitoring. Advances in Intelligent Data
Analysis VIII, 213–224. https://doi.org/10.1007/978-3-
642-03915-7_19
Ying, Y., Garrett, J. H., Oppenheim, I. J., Soibelman, L.,
Harley, J. B., Shi, J., & Jin, Y. (2013). Toward data-