curacy. Journal of Computer and Communications,
9:150–156.
Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing inter-
nal covariate shift. In Proceedings of the 32nd In-
ternational Conference on International Conference
on Machine Learning - Volume 37, ICML’15, page
448–456. JMLR.org.
Irie and Miyake (1988). Capabilities of three-layered per-
ceptrons. In IEEE 1988 International Conference on
Neural Networks, pages 641–648 vol.1.
Jeong, E., Kim, J., and Ha, S. (2022). Tensorrt-based frame-
work and optimization methodology for deep learning
inference on jetson boards. ACM Transactions on Em-
bedded Computing Systems, 21(5).
Kanopoulos, N., Vasanthavada, N., and Baker, R. (1988).
Design of an image edge detection filter using the so-
bel operator. IEEE Journal of Solid-State Circuits,
23(2):358–367.
Kim, M., Park, C., Kim, S., Hong, T., and Ro, W. W.
(2019). Efficient dilated-winograd convolutional neu-
ral networks. In 2019 IEEE International Conference
on Image Processing (ICIP), pages 2711–2715.
Kingma, D. P. and Ba, J. (2015). Adam: A method for
stochastic optimization. In Bengio, Y. and LeCun,
Y., editors, 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Pereira, F., Burges, C., Bottou, L.,
and Weinberger, K., editors, Advances in Neural In-
formation Processing Systems, volume 25. Curran As-
sociates, Inc.
Lavin, A. and Gray, S. (2016). Fast algorithms for convo-
lutional neural networks. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 4013–4021.
Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Lee, M., Kim, M., and Jeong, C. Y. (2022). Real-time se-
mantic segmentation on edge devices: A performance
comparison of segmentation models. In 2022 13th In-
ternational Conference on Information and Commu-
nication Technology Convergence (ICTC), pages 383–
388.
Lin, T.-Y., Doll
´
ar, P., Girshick, R., He, K., Hariharan, B.,
and Belongie, S. (2017). Feature pyramid networks
for object detection. In 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pages 936–944.
Liu, J., Yang, D., and Lai, J. (2021). Optimizing winograd-
based convolution with tensor cores. In Proceedings
of the 50th International Conference on Parallel Pro-
cessing, ICPP ’21, New York, NY, USA. Association
for Computing Machinery.
Liu, S. and Deng, W. (2015). Very deep convolutional
neural network based image classification using small
training sample size. In 2015 3rd IAPR Asian Confer-
ence on Pattern Recognition (ACPR), pages 730–734.
Long, J., Shelhamer, E., and Darrell, T. (2015). Fully con-
volutional networks for semantic segmentation. In
2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 3431–3440.
Lyu, Y., Vosselman, G., Xia, G.-S., Yilmaz, A., and Yang,
M. Y. (2020). Uavid: A semantic segmentation dataset
for uav imagery. ISPRS Journal of Photogrammetry
and Remote Sensing, 165:108–119.
Mahony, N. O., Campbell, S., Carvalho, A., Harapanahalli,
S., Velasco-Hern
´
andez, G. A., Krpalkova, L., Riordan,
D., and Walsh, J. (2019). Deep learning vs. traditional
computer vision. In Computer Vision Conference.
Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz,
N., and Terzopoulos, D. (2022). Image segmenta-
tion using deep learning: A survey. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
44(7):3523–3542.
Neves, G. F., Chaudron, J.-B., and Dion, A. (2021). Recur-
rent neural networks analysis for embedded systems.
In NCTA 2021 - 13th International Joint Conference
on Neural Computation Theory and Applications, Vir-
tual Event, FR.
Noh, H., Hong, S., and Han, B. (2015). Learning decon-
volution network for semantic segmentation. In 2015
IEEE International Conference on Computer Vision
(ICCV), pages 1520–1528, Los Alamitos, CA, USA.
IEEE Computer Society.
NVIDIA (2020). NVIDIA Xavier Series System-on-Chip -
TECHNICAL REFERENCE MANUAL.
NVIDIA (2022). NVIDIA Orin Series System-on-Chip -
TECHNICAL REFERENCE MANUAL.
NVIDIA (2023). Ampere Tuning Guide.
Osco, L., Junior, J., Ramos, A. P., Jorge, L., Fatholahi, S. N.,
Silva, J., Matsubara, E., Pistori, H., Gonc¸alves, W.,
and Li, J. (2021). A review on deep learning in uav re-
mote sensing. International Journal of Applied Earth
Observation and Geoinformation, 102:102456.
Otsu, N. (1979). A threshold selection method from gray-
level histograms. IEEE Transactions on Systems,
Man, and Cybernetics, 9(1):62–66.
Paszke, A., Chaurasia, A., Kim, S., and Culurciello, E.
(2016). Enet: A deep neural network architecture for
real-time semantic segmentation.
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., Desmaison, A., K
¨
opf, A., Yang, E. Z.,
DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S.,
Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019).
Pytorch: An imperative style, high-performance deep
learning library. CoRR, abs/1912.01703.
Perez-Cerrolaza, J., Abella, J., Kosmidis, L., Calderon,
A. J., Cazorla, F., and Flores, J. L. (2022). Gpu de-
vices for safety-critical systems: A survey. ACM Com-
puting Surveys, 55(7).
Romera, E.,
´
Alvarez, J. M., Bergasa, L. M., and Ar-
royo, R. (2018). Erfnet: Efficient residual factorized
convnet for real-time semantic segmentation. IEEE
Exploring Segnet Architectures for iGPU Embedded Devices
429