Figure 3: Training & Validation loss plots vs Epochs for the
Best ANN DE Model.
algorithm, outperforming both GA and PSO.
7 CONCLUSION
This paper applies metaheuristic algorithms to opti-
mize hyperparameters in deep learning models like
Artificial Neural Networks, GRUs, LSTMs, and
ARIMA for better performance. We find that Dif-
ferential Evolution (DE) outperforms Genetic Algo-
rithm (GA) and Particle Swarm Optimization (PSO)
in short-term weather forecasting. DE’s ability to ex-
plore and exploit the search space effectively leads to
optimal solutions. While PSO performs well, it can
sufferfrom prematureconvergence,and GA may have
slow convergence and limitations for hyperparameter
configurations. In the future, this approach can be ex-
tended to explore other evolutionary-based feature se-
lections for various time series applications.
REFERENCES
Brockwell, P. J. and Davis, R. A. (1996). Arma mod-
els. Introduction to Time Series and Forecasting, page
81–108.
B¨ack, T. and Schwefel, H.-P. (1993). An overview of evo-
lutionary algorithms for parameter optimization. Evo-
lutionary Computation, 1(1):1–23.
Canada, E. and Change, C. (2023). Government of canada
/ gouvernement du canada.
Harvey, A. C. (1990). Arima models. Time Series and
Statistics, page 22–24.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8):1735–1780.
Jing, L., Gulcehre, C., Peurifoy, J., Shen, Y., Tegmark, M.,
Soljacic, M., and Bengio, Y. (2019). Gated orthogonal
recurrent units: On learning to forget. Neural Compu-
tation, 31(4):765–783.
Katoch, S., Chauhan, S. S., and Kumar, V. (2020). A review
on genetic algorithm: Past, present, and future. Multi-
media Tools and Applications, 80(5):8091–8126.
Kelley, H. J. (1960). Gradient theory of optimal flight paths.
ARS Journal, 30(10):947–954.
Kennedy, J. and Eberhart, R. (1995). Particle swarm op-
timization. Proceedings of ICNN’95 - International
Conference on Neural Networks, 4:1942–1948.
Maclaurin, D., Duvenaud, D., and Adams, R. P. (2015).
Gradient-based hyperparameter optimization through
reversible learning.
Man, K., Tang, K., and Kwong, S. (1996). Genetic algo-
rithms: Concepts and applications [in engineering de-
sign]. IEEE Transactions on Industrial Electronics,
43(5):519–534.
Masum, M., Shahriar, H., Haddad, H., Faruk, M. J., Valero,
M., Khan, M. A., Rahman, M. A., Adnan, M. I., Cuz-
zocrea, A., and Wu, F. (2021). Bayesian hyperpa-
rameter optimization for deep neural network-based
network intrusion detection. 2021 IEEE International
Conference on Big Data (Big Data).
Nematzadeh, S., Kiani, F., Torkamanian-Afshar, M., and
Aydin, N.(2022). Tuning hyperparameters of machine
learning algorithms and deep neural networks using
metaheuristics: A bioinformatics study on biomedi-
cal and biological cases. Computational Biology and
Chemistry, 97:107619.
Orive, D., Sorrosal, G., Borges, C., Martin, C., and Alonso-
Vicario, A. (2014). Evolutionary algorithms for
hyperparameter tuning on neural networks models.
26th European Modeling and Simulation Symposium,
EMSS 2014, pages 402–409.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., et al. (2011). Scikit-
learn: Machine learning in python. Journal of ma-
chine learning research, 12(Oct):2825–2830.
Radzi, S. F., Karim, M. K., Saripan, M. I., Rahman, M. A.,
Isa, I. N., and Ibahim, M. J. (2021). Hyperparam-
eter tuning and pipeline optimization via grid search
method and tree-based automl in breast cancer predic-
tion. Journal of Personalized Medicine, 11(10):978.
Shekar, B. H. and Dagnew, G. (2019). Grid search-based
hyperparameter tuning and classification of microar-
ray cancer data. In 2019 Second International Con-
ference on Advanced Computational and Communi-
cation Paradigms (ICACCP), pages 1–8.
Storn, R. and Price, K. (1997). Differential evolution – a
simple and efficient heuristic for global optimization
over continuous spaces - journal of global optimiza-
tion.
Wang, S., Ma, C., Xu, Y., Wang, J., and Wu, W. (2022).
A hyperparameter optimization algorithm for the lstm
temperature prediction model in data center. Scientific
Programming, 2022:1–13.