REFERENCES
Andreychuk, A., Yakovlev, K. S., Surynek, P., Atzmon, D.,
and Stern, R. (2022). Multi-agent pathfinding with
continuous time. Artif. Intell., 305:103662.
Ang, K. H., Chong, G., and Li, Y. (2005). Pid control sys-
tem analysis, design, and technology. IEEE Transac-
tions on Control Systems Technology, 13(4):559–576.
Bitcraze AB (2022). System overview.
Chud
´
y, J. and Surynek, P. (2021). ESO-MAPF: bridging
discrete planning and continuous execution in multi-
agent pathfinding. In Proceedings of AAAI 2021,
pages 16014–16016. AAAI Press.
Edelkamp, S. and Greulich, C. (2018). A case study of plan-
ning for smart factories - model checking and monte
carlo search for the rescue. Int. J. Softw. Tools Technol.
Transf., 20(5):515–528.
Geffner, H. (2004). Planning graphs and knowledge compi-
lation. In Proceedings of the Fourteenth International
Conference on Automated Planning and Schedul-
ing (ICAPS 2004), June 3-7 2004, Whistler, British
Columbia, Canada, pages 52–62. AAAI.
Ghallab, M., Nau, D., and Traverso, P. (2016). Automated
Planning and Acting. Cambridge University Press.
Ghallab, M., Nau, D. S., and Traverso, P. (2004). Automated
planning - theory and practice. Elsevier.
Helmert, M. (2006). The fast downward planning system.
J. Artif. Intell. Res., 26:191–246.
H
¨
onig, W., Kumar, T. K. S., Cohen, L., Ma, H., Xu, H., Aya-
nian, N., and Koenig, S. (2016). Multi-agent path find-
ing with kinematic constraints. In Proceedings of the
Twenty-Sixth International Conference on Automated
Planning and Scheduling, ICAPS 2016, London, UK,
June 12-17, 2016, pages 477–485. AAAI Press.
Phillips, M. and Likhachev, M. (2011). SIPP: safe interval
path planning for dynamic environments. In Proceed-
ings of ICRA 2011, pages 5628–5635.
Ryan, M. R. K. (2008). Exploiting subgraph structure in
multi-robot path planning. J. Artif. Intell. Res. (JAIR),
31:497–542.
Sharon, G., Stern, R., Felner, A., and Sturtevant, N.
(2015). Conflict-based search for optimal multi-agent
pathfinding. Artif. Intell., 219:40–66.
Sharon, G., Stern, R., Goldenberg, M., and Felner, A.
(2013). The increasing cost tree search for optimal
multi-agent pathfinding. Artif. Intell., 195:470–495.
Stern, R. (2019). Multi-agent path finding - an overview. In
Artificial Intelligence - 5th RAAI Summer School, Dol-
goprudny, Russia, July 4-7, 2019, Tutorial Lectures,
volume 11866 of Lecture Notes in Computer Science,
pages 96–115. Springer.
Surynek, P. (2009). A novel approach to path planning for
multiple robots in bi-connected graphs. In Proceed-
igns of ICRA 2009, pages 3613–3619.
Surynek, P. (2012). Towards optimal cooperative path plan-
ning in hard setups through satisfiability solving. In
PRICAI 2012: Trends in Artificial Intelligence - 12th
Pacific Rim International Conference on Artificial In-
telligence, Kuching, Malaysia, September 3-7, 2012.
Proceedings, volume 7458 of Lecture Notes in Com-
puter Science, pages 564–576. Springer.
Torralba,
´
A., Alc
´
azar, V., Kissmann, P., and Edelkamp, S.
(2017). Efficient symbolic search for cost-optimal
planning. Artif. Intell., 242:52–79.
Wang, K. C. and Botea, A. (2011). MAPP: a scalable multi-
agent path planning algorithm with tractability and
completeness guarantees. J. Artif. Intell. Res., 42:55–
90.
ICINCO 2023 - 20th International Conference on Informatics in Control, Automation and Robotics
228