nario, we used an automatic criterion for switching.
In future work, we plan to try different combina-
tions for scenarios using nodes, depth, critical path,
etc. In addition, we intend to use different mea-
surements for size, based on complexity, for exam-
ple defining different weights according to the type of
node.
REFERENCES
Aenugu, S. and Spector, L. (2019). Lexicase selection in
Learning Classifier Systems. In Proceedings of the
Genetic and Evolutionary Computation Conference,
pages 356–364. arXiv:1907.04736 [cs].
Breiman, L. (1984). Classification and regression trees.
CRC press, Boca Raton, Florida.
de Lima, A., Carvalho, S., Dias, D. M., Naredo, E., Sulli-
van, J. P., and Ryan, C. (2022a). Grape: Grammatical
algorithms in python for evolution. Signals, 3(3):642–
663.
de Lima, A., Carvalho, S., Dias, D. M., Naredo, E., Sul-
livan, J. P., and Ryan, C. (2022b). Lexi2: Lexicase
selection with lexicographic parsimony pressure. In
Proceedings of the Genetic and Evolutionary Compu-
tation Conference, GECCO ’22, page 929–937, New
York, NY, USA. Association for Computing Machin-
ery.
De Rainville, F.-M., Fortin, F.-A., Gardner, M.-A., Parizeau,
M., and Gagne, C. (2012). DEAP: a python frame-
work for evolutionary algorithms. In Wagner, S. and
Affenzeller, M., editors, GECCO 2012 Evolutionary
Computation Software Systems (EvoSoft), pages 85–
92, Philadelphia, Pennsylvania, USA. ACM.
Dua, D. and Graff, C. (2017). UCI machine learning repos-
itory.
Fenton, M., McDermott, J., Fagan, D., Forstenlechner, S.,
Hemberg, E., and O’Neill, M. (2017). PonyGE2:
Grammatical evolution in python. In Proceedings
of the Genetic and Evolutionary Computation Con-
ference Companion, GECCO ’17, pages 1194–1201,
Berlin, Germany. ACM.
Gupta, A., Kumar, L., Jain, R., and Nagrath, P. (2020).
Heart Disease Prediction Using Classification (Naive
Bayes), pages 561–573. Springer Singapore.
Helmuth, T., Lengler, J., and La Cava, W. (2022). Popula-
tion Diversity Leads to Short Running Times of Lex-
icase Selection. In Rudolph, G., Kononova, A. V.,
Aguirre, H., Kerschke, P., Ochoa, G., and Tu
ˇ
sar, T.,
editors, Parallel Problem Solving from Nature – PPSN
XVII, Lecture Notes in Computer Science, pages 485–
498, Cham. Springer International Publishing.
Helmuth, T., Mcphee, N., and Spector, L. (2016a). Lexicase
Selection for Program Synthesis: A Diversity Anal-
ysis. In Genetic Programming Theory and Practice
XIII, pages 151–167. Springer.
Helmuth, T., McPhee, N. F., and Spector, L. (2016b). Ef-
fects of Lexicase and Tournament Selection on Diver-
sity Recovery and Maintenance. In Proceedings of the
2016 on Genetic and Evolutionary Computation Con-
ference Companion, GECCO ’16 Companion, pages
983–990, New York, NY, USA. Association for Com-
puting Machinery.
Helmuth, T., Pantridge, E., and Spector, L. (2020).
On the importance of specialists for lexicase selec-
tion. Genetic Programming and Evolvable Machines,
21(3):349–373.
Helmuth, T. and Spector, L. (2013). Evolving a digi-
tal multiplier with the pushgp genetic programming
system. In Proceedings of the 15th annual confer-
ence companion on Genetic and evolutionary com-
putation, GECCO ’13 Companion, pages 1627–1634,
New York, NY, USA. Association for Computing Ma-
chinery.
Helmuth, T., Spector, L., and Matheson, J. (2015). Solv-
ing Uncompromising Problems With Lexicase Selec-
tion. IEEE Transactions on Evolutionary Computa-
tion, 19(5):630–643. Conference Name: IEEE Trans-
actions on Evolutionary Computation.
Koza, J. R. (1992). Genetic Programming - On the Pro-
gramming of Computers by Means of Natural Selec-
tion. Complex adaptive systems. MIT Press.
La Cava, W., Spector, L., and Danai, K. (2016). Epsilon-
Lexicase Selection for Regression. In Proceedings
of the Genetic and Evolutionary Computation Confer-
ence 2016, GECCO ’16, pages 741–748, New York,
NY, USA. Association for Computing Machinery.
Luke, S. and Panait, L. (2002). Lexicographic parsi-
mony pressure. In Proceedings of the 4th Annual
Conference on Genetic and Evolutionary Computa-
tion, GECCO’02, pages 829–836, San Francisco, CA,
USA. Morgan Kaufmann Publishers Inc.
Murphy, A., Murphy, G., Amaral, J., MotaDias, D., Naredo,
E., and Ryan, C. (2021). Towards Incorporating Hu-
man Knowledge in Fuzzy Pattern Tree Evolution. In
Hu, T., Lourenc¸o, N., and Medvet, E., editors, Ge-
netic Programming, Lecture Notes in Computer Sci-
ence, pages 66–81, Cham. Springer International Pub-
lishing.
O’Neill, M. and Ryan, C. (2001). Grammatical evolu-
tion. IEEE Transactions on Evolutionary Computa-
tion, 5(4):349–358. Conference Name: IEEE Trans-
actions on Evolutionary Computation.
Poli, R., Langdon, W. B., and McPhee, N. F. (2008).
A field guide to genetic programming. Pub-
lished via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, UK. (With
contributions by J. R. Koza).
Ryan, C. and Azad, R. M. A. (2003). Sensible initialisa-
tion in grammatical evolution. In Barry, A. M., editor,
GECCO 2003: Proceedings of the Bird of a Feather
Workshops, Genetic and Evolutionary Computation
Conference, pages 142–145, Chigaco. AAAI.
Ryan, C., Collins, J., and O’Neill, M. (1998). Grammati-
cal evolution: Evolving programs for an arbitrary lan-
guage. In Lecture Notes in Computer Science, pages
83–96, Berlin, Heidelberg. Springer.
Ryan, C., O’Neill, M., and Collins, J. J., editors (2018).
Handbook of Grammatical Evolution. Springer.
ECTA 2023 - 15th International Conference on Evolutionary Computation Theory and Applications
106