Forni, F. and Sepulchre, R. (2014). A differential Lyapunov
framework for Contraction Analysis. IEEE Transac-
tions on Automatic Control, 59(3):614–628.
Giesl, P. (2007). Construction of Global Lyapunov Func-
tions Using Radial Basis Functions. Lecture Notes in
Math. 1904, Springer.
Giesl, P. (2015). Converse theorems on contraction metrics
for an equilibrium. J. Math. Anal. Appl., (424):1380–
1403.
Giesl, P. (2019). Computation of a contraction metric for
a periodic orbit using meshfree collocation. SIAM J.
Appl. Dyn. Syst., 18(3):1536–1564.
Giesl, P. and Hafstein, S. (2013). Construction of a CPA
contraction metric for periodic orbits using semidefi-
nite optimization. Nonlinear Anal., 86:114–134.
Giesl, P. and Hafstein, S. (2014). Revised CPA method to
compute Lyapunov functions for nonlinear systems. J.
Math. Anal. Appl., 410:292–306.
Giesl, P. and Hafstein, S. (2015a). Computation and veri-
fication of Lyapunov functions. SIAM J. Appl. Dyn.
Syst., 14(4):1663–1698.
Giesl, P. and Hafstein, S. (2015b). Review of computa-
tional methods for Lyapunov functions. Discrete Con-
tin. Dyn. Syst. Ser. B, 20(8):2291–2331.
Giesl, P. and Hafstein, S. (2023). Dynamical Systems in
Theoretical Perspective, chapter Lyapunov Functions
by Interpolating Numerical Quadrature: Proof of Con-
vergence, page (to appear). Springer. Springer Pro-
ceedings in Mathematics and Statistics.
Giesl, P., Hafstein, S., Haraldsdottir, M., Thorsteinsson, D.,
and Kawan, C. (2023a). Subgradient algorithm for
computing contraction metrics for equilibria. J. Com-
put. Dynamics, 10(2):281–303.
Giesl, P., Hafstein, S., and Kawan, C. (2023b). Review on
contraction analysis and computation of contraction
metrics. J. Comput. Dynamics, 10(1):1–47.
Giesl, P., Hafstein, S., and Mehrabinezhad, I. (2021). Com-
putation and verification of contraction metrics for pe-
riodic orbits. J. Math. Anal. Appl., 503(2):Paper No.
125309, 32.
Giesl, P., Hafstein, S., and Mehrabinezhad, I. (2023c). Con-
traction metrics by numerical integration and quadra-
ture: Uniform error estimate. In Proceedings of the
20th International Conference on Informatics in Con-
trol, Automation and Robotics (ICINCO), page (sub-
mitted).
Gudmundsson, S. and Hafstein, S. (2015). Lyapunov func-
tion verification: MATLAB implementation. In Pro-
ceedings of the 1st Conference on Modelling, Identifi-
cation and Control of Nonlinear Systems (MICNON),
number 0235, pages 806–811.
Hafstein, S. (2004). A constructive converse Lyapunov the-
orem on exponential stability. Discrete Contin. Dyn.
Syst. Ser. A, 10(3):657–678.
Hafstein, S. (2005). A constructive converse Lyapunov
theorem on asymptotic stability for nonlinear au-
tonomous ordinary differential equations. Dynamical
Systems: An International Journal, 20(3):281–299.
Hafstein, S. (2019a). Computational Science - ICCS 2019:
19th International Conference, Faro, Portugal, June
12-14, 2019, Proceedings, Part V, chapter Numerical
Analysis Project in ODEs for Undergraduate Students,
pages 412–434. Springer.
Hafstein, S. (2019b). Numerical ODE solvers and integra-
tion methods in the computation of CPA Lyapunov
functions. In Proceedings of the 18th European Con-
trol Conference (ECC), pages 1136–1141.
Hafstein, S. (2020). CPA Lyapunov functions: Switched
systems vs. differential inclusions. In Proceedings of
the 17th International Conference on Informatics in
Control, Automation and Robotics (ICINCO), pages
745–753.
Hafstein, S., Kellett, C., and Li, H. (2014a). Computation
of Lyapunov functions for discrete-time systems using
the Yoshizawa construction. In Proceedings of 53rd
IEEE Conference on Decision and Control (CDC).
Hafstein, S., Kellett, C., and Li, H. (2014b). Continu-
ous and piecewise affine Lyapunov functions using the
Yoshizawa construction. In Proceedings of the 2014
American Control Conference (ACC), pages 548–553
(no. 0170), Portland (OR), USA.
Hafstein, S., Kellett, C., and Li, H. (2015). Computing con-
tinuous and piecewise affine Lyapunov functions for
nonlinear systems. J. Comput. Dyn, 2(2):227 – 246.
Hafstein, S. and Valfells, A. (2017). Study of dynamical
systems by fast numerical computation of Lyapunov
functions. In Proceedings of the 14th International
Conference on Dynamical Systems: Theory and Ap-
plications (DSTA), volume Mathematical and Numer-
ical Aspects of Dynamical System Analysis, pages
220–240.
Hafstein, S. and Valfells, A. (2019). Efficient computation
of Lyapunov functions for nonlinear systems by in-
tegrating numerical solutions. Nonlinear Dynamics,
97(3):1895–1910.
Hahn, W. (1967). Stability of Motion. Springer, Berlin.
Hartman, P. (1961). On stability in the large for systems
of ordinary differential equations. Canadian J. Math.,
13:480–492.
Hartman, P. (1964). Ordinary Differential Equations. Wi-
ley, New York.
Julian, P., Guivant, J., and Desages, A. (1999). A
parametrization of piecewise linear Lyapunov func-
tions via linear programming. Int. J. Control, 72(7-
8):702–715.
Kamyar, R. and Peet, M. (2015). Polynomial optimization
with applications to stability analysis and control – an
alternative to sum of squares. Discrete Contin. Dyn.
Syst. Ser. B, 20(8):2383–2417.
Khalil, H. (2002). Nonlinear Systems. Pearson, 3. edition.
Krasovski
˘
i, N. N. (1963). Problems of the Theory of Stabil-
ity of Motion. Mir, Moskow, 1959. English translation
by Stanford University Press.
Lewis, D. (1951). Differential equations referred to a vari-
able metric. Amer. J. Math., 73:48–58.
Lewis, D. C. (1949). Metric properties of differential equa-
tions. Amer. J. Math., 71:294–312.
Li, H., Hafstein, S., and Kellett, C. (2015). Computation of
continuous and piecewise affine Lyapunov functions
ICINCO 2023 - 20th International Conference on Informatics in Control, Automation and Robotics
52