with a case study on COVID-19. Expert Systems with
Applications, 185:115632.
AlGhamdi, N., Khatoon, S., and Alshamari, M. (2022).
Multi-Aspect Oriented Sentiment Classification: Prior
Knowledge Topic Modelling and Ensemble Learning
Classifier Approach. Applied Sciences, 12(8).
Chen, J., Li, Z., and Qin, S. (2022). Ensemble Learning for
Assessing Degree of Humor. In 2022 International
Conference on Big Data, Information and Computer
Network (BDICN), pages 492–498.
Chi, G., Huang, X., Zhou, Y., and Guo, X. (2023). Discrim-
inating the default risk of small enterprises: Stacking
model with different optimal feature combinations.
Expert Systems with Applications, 229:120494.
Dong, Y., Zhang, H., Wang, C., and Zhou, X. (2021). Wind
power forecasting based on stacking ensemble model,
decomposition and intelligent optimization algorithm.
Neurocomputing, 462:169–184.
Dua, D. and Graff, C. (2017). Uci machine learning reposi-
tory.
Hastie, T., Tibshiran, R., and Friedman, J. (2016). The Ele-
ments of Statistical Learning: Data Mining, Inference,
and Prediction. Springer.
Koopialipoor, M., Asteris, P. G., Mohammed, A. S., Alex-
akis, D. E., Mamou, A., and Armaghani, D. J. (2022).
Introducing stacking machine learning approaches for
the prediction of rock deformation. Transportation
Geotechnics, 34:100756.
Lung, R. I. and Dumitrescu, D. (2008). Computing
nash equilibria by means of evolutionary computa-
tion. Int. J. of Computers, Communications & Con-
trol, III(suppl.issue):364–368.
Lung, R. I., Mihoc, T. D., and Dumitrescu, D. (2010). Nash
equilibria detection for multi-player games. In Pro-
ceedings of the IEEE Congress on Evolutionary Com-
putation, CEC 2010, Barcelona, Spain, 18-23 July
2010, pages 1–5. IEEE.
Maschler, M., Zamir, S., Solan, E., Hellman, Z., and Borns,
M. (2020). Game Theory. Cambridge University
Press.
Melo, F. (2013). Area under the ROC Curve, pages 38–39.
Springer New York, New York, NY.
Mienye, I. D. and Sun, Y. (2022). A Survey of Ensemble
Learning: Concepts, Algorithms, Applications, and
Prospects. IEEE Access, 10:99129–99149.
Mohapatra, S., Maneesha, S., Mohanty, S., Patra, P. K.,
Bhoi, S. K., Sahoo, K. S., and Gandomi, A. H.
(2023). A stacking classifiers model for detecting
heart irregularities and predicting Cardiovascular Dis-
ease. Healthcare Analytics, 3:100133.
Pavlyshenko, B. (2018). Using stacking approaches for ma-
chine learning models. In 2018 IEEE Second Interna-
tional Conference on Data Stream Mining & Process-
ing (DSMP), pages 255–258.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Polikar, R. (2012). Ensemble Learning. In Zhang, C.
and Ma, Y., editors, Ensemble Machine Learning:
Methods and Applications, pages 1–34. Springer New
York, New York, NY.
Storn, R. and Price, K. (1997). Differential evolution – a
simple and efficient heuristic for global optimization
over continuous spaces. J. of Global Optimization,
11(4):341–359.
Sun, W. and Trevor, B. (2018). A stacking ensemble learn-
ing framework for annual river ice breakup dates.
Journal of Hydrology, 561:636–650.
Thomsen, R. (2004). Multimodal optimization using
crowding-based differential evolution. In Proceedings
of the 2004 Congress on Evolutionary Computation
(IEEE Cat. No.04TH8753), volume 2, pages 1382–
1389 Vol.2.
Vovk, V. (2015). The Fundamental Nature of the Log Loss
Function, pages 307–318. Springer International Pub-
lishing, Cham.
Wang, G., Sun, J., Ma, J., Xu, K., and Gu, J. (2014). Sen-
timent classification: The contribution of ensemble
learning. Decision Support Systems, 57:77–93.
Wolpert, D. H. (1992). Stacked generalization. Neural Net-
works, 5(2):241–259.
Zaki, M. J. and Meira Jr., W. (2014). Data Mining and Anal-
ysis: Fundamental Concepts and Algorithms. Cam-
bridge University Press.
Zhang, Y., Lu, H., Jiang, C., Li, X., and Tian, X. (2021).
Aspect-Based Sentiment Analysis of User Reviews in
5G Networks. IEEE Network, 35(4):228–233.
ECTA 2023 - 15th International Conference on Evolutionary Computation Theory and Applications
264