International Conference on Inventive Communication
and Computational Technologies (ICICCT),
Coimbatore, India, 10–11 March 2017; IEEE: New
York, NY, USA, pp. 216–221.
Birim, S.O, Kazancoglu, I., Mangla, S. K., Kahraman, A.,
Kumar, S., Kazancoglu, Y. (2022). Detecting fake
reviews through topic modeling. Journal of Business
Research 149, 884–900
Chen, C., Zhang, M., Liu, Y., Ma, S. (2018). Neural
attentional rating regression with review-level
explanations. In Proceedings of the 2018 World Wide
Web Conference, pp. 1583-1592.
Dang, C.N., Moreno-García, M.N., De la Prieta, F. (2021).
An Approach to Integrating Sentiment Analysis into
Recommender Systems. Sensors 21, 5666,
https://doi.org/10.3390/s21165666.
Devlin, J., Chang, M-W., M-W., Lee, K., Toutanovan, K.
(2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. ArXiv,
arXiv:preprint/04805.
Diao, Q., Qiu, M., Wu, C.Y., Smola, A.J., Jiang, J., Wang,
C. (2014). Jointly modeling aspects, ratings and
sentiments for movie recommendation. In Proceedings
of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 193-
202.
Duantengchuan L., Liu, H., Zhang, Z., Lin, K., Fang, S.,
Li, Z., N-N. Xiong, N-N. (2021). CARM: Confidence-
aware recommender model via review representation
learning and historical rating behaviourin the online
platforms. Neurocomputing 455, pp. 283-296.
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T-S.
(2017). Neural collaborative filtering. In Proceedings
of the 26th Internet Conference on World Wide Web,
pp. 173–182.
Hu, B., Shi, C., Zhao, W.X., Yu, P.S. (2018). Leveraging
meta-path based context for top-n recommendation
with a neural co-attention model. In Proceedings of
the International Conference ACM SIGKDD, pp. 153-
1540.
Kim, D., Park, C., Oh, J., Lee, S., Yu, H. (2016).
Convolutional matrix factorization for document
context-aware recommendation. In Proceedings of the
10th ACM Conference on Recommender Systems
(RecSys), pp. 233-240.
Kingma DP, Ba J. (2014). Adam: A method for stochastic
optimization. In arXiv preprint arXiv: 1412.6980.
Li, D., Liu, H., Zhang, Z., Lin, K., Fang, S., Li, Z., Xiong,
N. (2021). CARM: Confidence-aware recommender
model via review representation learning and historical
rating behavior in the online platforms.
Neurocomputing 455, pp. 283–296
Mikolov, T., Chen, K., Corrado, G., Dean, J. (2013a)
Efficient Estimation of Word Representations in
Vector Space. ICLR - Workshop Poster,
Mikolov, T., Sutskever,I., Chen, K., Corrado, G.S., Dean,
J. (2013b). Distributed Representations of Words and
Phrases and their Compositionality. In Proceedings of
the 26th International Conference on Neural
Information Processing Systems NIPS'13, Volume 2,
Advances in Neural Info. Processing Systems 26.
Mnih, A., Salakhutdinov, R. (2007). Probabilistic matrix
factorization. In advances in neural information
processing systems.
Ni, J., Huang, Z., Cheng, J., Gao, S. (2021). An effective
recommendation model based on deep representation
learning. Information Sciences, Vol. 542, N °1, pp.
324-342.
Osman, N.A., Mohd Noah, S.A. Darwich, M., Mohd, M.
(2021). Integrating contextual sentiment analysis in
collaborative recommender systems. PLoS ONE Vol.
16, N° 3: e0248695,.
Pandey, A.C.; Rajpoot, D.S.; Saraswat, M. (2017). Twitter
sentiment analysis using hybrid cuckoo search
method. Info. Process. and Manag., 53, pp. 764–779.
Pennington, J., Socher, R., Manning, C-D. (2014). GloVe:
Global Vectors for Word Representation. Empirical
Methods. In Natural Language Processing (EMNLP),
https://nlp.stanford.edu/pubs/glove.pdf.
Rehman, A.U., Malik, A.K., Raza, B., Ali, W. (2019). A
hybrid CNN-LSTM model for improving accuracy of
movie reviews sentiment analysis. Multimedia Tools
and Applications 78, pp. 26597–26613.
Salas-Zárate, M.D.P., Medina-Moreira, J., Lagos-Ortiz,
K., Luna-Aveiga, H., Rodriguez-Garcia, M.A.,
Valencia-García, R. (2017). Sentiment analysis on
tweets about diabetes: An aspect-level approach.
Computational and Mathematical methods. pp. 1–9.
Wankhade, M., Sekhara Rao, A-C., Kulkarni, C. (2022). A
survey on sentiment analysis methods, applications,
and challenges. Artificial Intelligence Review.
Xue, D-X., Zhang, R., Feng, H., Wang, Y.-L. (2016).
CNN-SVM for microvascular morphological type
recognition with data augmentation. Journal of
Medical and Biological Engineering. 36, pp. 755–764.
Zhang, S., Yao, L., Sun, A. (2017). Deep learning based
recommender system: A survey and new perspectives.
In arXiv preprint arXiv: 1707.07435.
Zhang, X., Zheng, X. (2016). Comparison of Text
Sentiment Analysis Based on Machine Learning. In
Proceedings of the 2016 15th International
Symposium on Parallel and Distributed Computing
(ISPDC), Fuzhou, China, 8–10 July 2016; IEEE: New
York, NY, USA, pp. 230–233.
Zheng, L., Noroozi, V., Yu, P-S. (2017). Joint deep
modeling of users and items using reviews for
recommendation. In Proceedings of the tenth ACM
international conference on websearch and data
mining, pp. 425-434.