CAiSE Forum 2022, Leuven, Belgium, June 6–10, 2022,
Proceedings (pp. 10-18). Cham: Springer International
Publishing. https://doi.org/10.1007/978-3-031-07481-
3_2
Ballard, C., Compert, C., Jesionowski, T., Milman, I., Plants,
B., Rosen, B., & Smith, H. (2014). Information
governance principles and practices for a big data
landscape. IBM Redbooks.
Black, S., Davern, M., Maynard, S. B., & Nasser, H. (2023).
Data governance and the secondary use of data: The
board influence. Information and Organization, 33(2),
100447. https://doi.org/10.1016/j.infoandorg.2023.1004
47
Bode, J., Kühl, N., Kreuzberger, D., & Hirschl, S. (2023).
Data Mesh: Motivational Factors, Challenges, and Best
Practices. arXiv preprint arXiv:2302.01713.
Borjigin, C., & Zhang, C. (2021). Data Science: Trends,
Perspectives, and Prospects.
https://doi.org/10.21203/rs.3.rs-1014621/v2
Buer, S. V., Fragapane, G. I., & Strandhagen, J. O. (2018).
The data-driven process improvement cycle: Using
digitalization for continuous improvement. IFAC-
PapersOnLine, 51(11), 1035-1040. https://doi.org/10.10
16/j.ifacol.2018.08.471
Buranarach, M., Krataithong, P., Hinsheranan, S.,
Ruengittinun, S., & Supnithi, T. (2017, November). A
scalable framework for creating open government data
services from open government data catalog. In
Proceedings of the 9th International Conference on
Management of Digital EcoSystems (pp. 1-5).
https://doi.org/10.1145/3167020.3167021
Butte, V. K., & Butte, S. (2022, October). Enterprise Data
Strategy: A Decentralized Data Mesh Approach. In 2022
International Conference on Data Analytics for Business
and Industry (ICDABI) (pp. 62-66). IEEE.
Callegaro, M., Baker, R. P., Bethlehem, J., Göritz, A. S.,
Krosnick, J. A., & Lavrakas, P. J. (Eds.). (2014). Online
panel research: A data quality perspective. John Wiley &
Sons.
Castro, A., Machado, J., Roggendorf, M., & Soller, H.
(2020). How to build a data architecture to drive
innovation—today and tomorrow. McKinsey
Technology. Retrieved November, 21, 2021.
Dehghani, Z. (2022). Data Mesh - Delivering Data-Driven
Value at Scale. O'Reilly Media, Inc.
Dončević, J., Fertalj, K., Brčić, M., & Kovač, M. (2022).
Mask-Mediator-Wrapper architecture as a Data Mesh
driver. arXiv preprint arXiv:2209.04661.
Fan, J., Han, F., & Liu, H. (2014). Challenges of big data
analysis. National science review, 1(2), 293-314.
https://doi.org/10.1093/nsr/nwt032
Hechler, E., Weihrauch, M., & Wu, Y. (2023). Data Fabric
and Data Mesh Business Benefits. In Data Fabric and
Data Mesh Approaches with AI: A Guide to AI-based
Data Cataloging, Governance, Integration,
Orchestration, and Consumption (pp. 71-85). Berkeley,
CA: Apress.
Koltay, T. (2016). Data governance, data literacy and the
management of data quality. IFLA journal, 42(4), 303-
312. https://doi.org/10.1177/0340035216672238
Ladley, J. (2019). Data governance: How to design, deploy,
and sustain an effective data governance program.
Academic Press.
Liu, R., Isah, H., & Zulkernine, F. (2020). A big data lake for
multilevel streaming analytics. In 2020 1st International
Conference on Big Data Analytics and Practices
(IBDAP) (pp. 1-6). IEEE. https://doi.org/10.48550/
arXiv.2009.12415
Machado, I. A., Costa, C., & Santos, M. Y. (2022). Data
mesh: concepts and principles of a paradigm shift in data
architectures. Procedia Computer Science, 196, 263-271.
https://doi.org/10.1016/j.procs.2021.12.013
Macías, A., Muñoz, D., Navarro, E., & González, P. (2022,
November). Digital Twins-Based Data Fabric
Architecture to Enhance Data Management in Intelligent
Healthcare Ecosystems. In Proceedings of the
International Conference on Ubiquitous Computing &
Ambient Intelligence (UCAmI 2022) (pp. 38-49). Cham:
Springer International Publishing.
Malik, P. (2013). Governing big data: principles and
practices. IBM Journal of Research and Development,
57(3/4), 1-1. https://doi.org/10.1147/JRD.2013.2241359
Marr, B. (2016). Big data in practice: how 45 successful
companies used big data analytics to deliver
extraordinary results. John Wiley & Sons.
Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2020).
The role of information governance in big data analytics
driven innovation. Information & Management, 57(7),
103361. https://doi.org/10.1016/j.im.2020.103361
Pithadia, H., Fenoglio, E., Batrinca, B., Treleaven, P., Echim,
R., Bubutanu, A., & Kerrigan, C. (2023). Data Assets:
Tokenization and Valuation. Available at SSRN
4419590.
Podlesny, N. J., Kayem, A. V., & Meinel, C. (2022, July).
Cok: A survey of privacy challenges in relation to data
meshes. In Database and Expert Systems Applications:
33rd International Conference, DEXA 2022, Vienna,
Austria, August 22–24, 2022, Proceedings, Part I (pp. 85-
102). Cham: Springer International Publishing.
Priebe, T., Neumaier, S., & Markus, S. (2022). Von Data
Warehouse bis Data Mesh. BI-SPEKTRUM.
https://doi.org/10.48550/arXiv.2212.03612
Shin, B. (2003). An exploratory investigation of system
success factors in data warehousing. Journal of the
association for information systems, 4(1), 6.
https://doi.org/10.17705/1jais.00033
Shrivastava, S., Srivastav, N., Sheth, R., Karmarkar, R., &
Arora, K. (2022). Solutions Architect's Handbook: Kick-
start your career as a solutions architect by learning
architecture design principles and strategies. Packt
Publishing Ltd.
Silva, B. N., Diyan, M., & Han, K. (2019). Big data analytics.
In Deep learning: convergence to big data analytics (pp.
13-30). Singapore: Springer.
Strengholt, P. (2020). Data Management at Scale. O'Reilly
Media, Inc.
Tallon, P.P. (2013). Corporate Governance of Big Data:
Perspectives on Value, Risk, and Cost. Computer, 46(6):
32-38. https://doi.org/10.1109/MC.2013.155.