ACKNOWLEDGEMENTS
This work was partially funded by the Deutsche
Forschungsgemeinschaft (DFG). It was also partially
funded by the Bavarian Ministry of Economic Affairs,
Regional Development and Energy.
REFERENCES
Azad, S. K. (2019). Monitored convergence curve: a new
framework for metaheuristic structural optimization
algorithms. Structural and Multidisciplinary Opti-
mization, 60(2):481–499.
Bacardit, J., Brownlee, A. E. I., Cagnoni, S., Iacca, G., Mc-
Call, J., and Walker, D. (2022). The intersection of
evolutionary computation and explainable AI. In Pro-
ceedings of the Genetic and Evolutionary Computa-
tion Conference Companion. ACM.
Bai, S., Kolter, J. Z., and Koltun, V. (2018). An empiri-
cal evaluation of generic convolutional and recurrent
networks for sequence modeling.
Bang-Jensen, J., Chiarandini, M., Goegebeur, Y., and
Jørgensen, B. (2007). Mixed models for the analysis
of local search components. In Engineering Stochas-
tic Local Search Algorithms. Designing, Implement-
ing and Analyzing Effective Heuristics, pages 91–105.
Springer Berlin Heidelberg.
Bartz-Beielstein, T., Doerr, C., Berg, D. v. d., Bossek, J.,
Chandrasekaran, S., Eftimov, T., Fischbach, A., Ker-
schke, P., La Cava, W., Lopez-Ibanez, M., Malan,
K. M., Moore, J. H., Naujoks, B., Orzechowski, P.,
Volz, V., Wagner, M., and Weise, T. (2020). Bench-
marking in Optimization: Best Practice and Open Is-
sues.
Bartz-Beielstein, T., Zaefferer, M., and Rehbach, F. (2017).
In a Nutshell - The Sequential Parameter Optimization
Toolbox.
Bosman, P. and Engelbrecht, A. P. (2014). Diversity rate
of change measurement for particle swarm optimisers.
In Lecture Notes in Computer Science, pages 86–97.
Springer International Publishing.
Campelo, F. (2015). Towards statistical convergence cri-
teria for mutation-based evolutionary algorithms. In
2015 Latin America Congress on Computational In-
telligence (LA-CCI). IEEE.
Chen, Y. and He, J. (2021). Average convergence rate of
evolutionary algorithms in continuous optimization.
Information Sciences, 562:200–219.
Chignell, M., Tong, T., Mizobuchi, S., Delange, T., Ho, W.,
and Walmsley, W. (2015). Combining multiple mea-
sures into a single figure of merit. Procedia Computer
Science, 69:36–43.
Eftimov, T., Jankovic, A., Popovski, G., Doerr, C., and
Koro
ˇ
sec, P. (2021). Personalizing performance regres-
sion models to black-box optimization problems. In
Proceedings of the Genetic and Evolutionary Compu-
tation Conference. ACM.
Eftimov, T. and Koro
ˇ
sec, P. (2019). A novel statistical ap-
proach for comparing meta-heuristic stochastic opti-
mization algorithms according to the distribution of
solutions in the search space. Information Sciences,
489:255–273.
Eftimov, T., Petelin, G., and Koro
ˇ
sec, P. (2020). DSCTool:
A web-service-based framework for statistical com-
parison of stochastic optimization algorithms. Applied
Soft Computing, 87:105977.
Halim, A. H., Ismail, I., and Das, S. (2020). Performance
assessment of the metaheuristic optimization algo-
rithms: an exhaustive review. Artificial Intelligence
Review, 54(3):2323–2409.
Hansen, N., Auger, A., Brockhoff, D., Tu
ˇ
sar, D., and Tu
ˇ
sar,
T. (2016). COCO: Performance Assessment.
He, J. and Lin, G. (2016). Average convergence rate of
evolutionary algorithms. IEEE Transactions on Evo-
lutionary Computation, 20(2):316–321.
Holstad, T. S., Ræder, T. M., Evans, D. M., Sm
˚
abr
˚
aten,
D. R., Krohns, S., Schaab, J., Yan, Z., Bourret, E.,
van Helvoort, A. T. J., Grande, T., Selbach, S. M.,
Agar, J. C., and Meier, D. (2020). Application of a
long short-term memory for deconvoluting conduc-
tance contributions at charged ferroelectric domain
walls. npj Computational Materials, 6(1).
Ochoa, G., Malan, K. M., and Blum, C. (2021). Search tra-
jectory networks: A tool for analysing and visualising
the behaviour of metaheuristics. Applied Soft Com-
puting, 109:107492.
Song, M.-K., Lin, F.-C., Ward, S. E., and Fine, J. P. (2013).
Composite variables. Nursing Research, 62(1):45–49.
Stegherr, H., Luley, L., Wurth, J., Heider, M., and H
¨
ahner,
J. (2023). A framework for modular construction and
evaluation of metaheuristics. Technical Report 2023-
01, Fakult
¨
at f
¨
ur Angewandte Informatik.
Tanabe, R. (2022). Benchmarking feature-based algorithm
selection systems for black-box numerical optimiza-
tion. IEEE Transactions on Evolutionary Computa-
tion, 26(6):1321–1335.
van Stein, B., Caraffini, F., and Kononova, A. V. (2021).
Emergence of structural bias in differential evolution.
In Proceedings of the Genetic and Evolutionary Com-
putation Conference Companion. ACM.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. (2017). Attention is all you need. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.
Vermetten, D., Caraffini, F., van Stein, B., and Kononova,
A. V. (2022a). Using structural bias to analyse the
behaviour of modular CMA-ES. In Proceedings of
the Genetic and Evolutionary Computation Confer-
ence Companion. ACM.
Vermetten, D., van Stein, B., Caraffini, F., Minku, L. L.,
and Kononova, A. V. (2022b). BIAS: A toolbox for
benchmarking structural bias in the continuous do-
main. IEEE Transactions on Evolutionary Computa-
tion, 26(6):1380–1393.
Assisting Convergence Behaviour Characterisation with Unsupervised Clustering
117